首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
An emerging DNA sequencing technique uses protein or solid-state pores to analyze individual strands as they are driven in single-file order past a nanoscale sensor. However, uncontrolled electrophoresis of DNA through these nanopores is too fast for accurate base reads. Here, we describe forward and reverse ratcheting of DNA templates through the α-hemolysin nanopore controlled by phi29 DNA polymerase without the need for active voltage control. DNA strands were ratcheted through the pore at median rates of 2.5-40 nucleotides per second and were examined at one nucleotide spatial precision in real time. Up to 500 molecules were processed at ~130 molecules per hour through one pore. The probability of a registry error (an insertion or deletion) at individual positions during one pass along the template strand ranged from 10% to 24.5% without optimization. This strategy facilitates multiple reads of individual strands and is transferable to other nanopore devices for implementation of DNA sequence analysis.  相似文献   

2.
RNA and DNA strands produce ionic current signatures when driven through an alpha-hemolysin channel by an applied voltage. Here we combine this nanopore detector with a support vector machine (SVM) to analyze DNA hairpin molecules on the millisecond time scale. Measurable properties include duplex stem length, base pair mismatches, and loop length. This nanopore instrument can discriminate between individual DNA hairpins that differ by one base pair or by one nucleotide.  相似文献   

3.
Nanopores are a promising platform in next generation DNA sequencing. In this platform, an individual DNA strand is threaded into nanopore using an electric field, and enzyme-based ratcheting is used to move the strand through the detector. During this process the residual ion current through the pore is measured, which exhibits unique levels for different base combinations inside the pore. While this approach has shown great promise, accuracy is not optimal because the four bases are chemically comparable to one another, leading to small differences in current obstruction. Nucleobase-specific chemical tagging can be a viable approach to enhancing the contrast between different bases in the sequence. Herein we show that covalent modification of one or both of the pyrimidine bases by an osmium bipyridine complex leads to measureable differences in the blockade amplitudes of DNA molecules. We qualitatively determine the degree of osmylation of a DNA strand by passing it through a solid-state nanopore, and are thus able to gauge T and C base content. In addition, we show that osmium bipyridine reacts with dsDNA, leading to substantially different current blockade levels than exhibited for bare dsDNA. This work serves as a proof of principle for nanopore sequencing and mapping via base-specific DNA osmylation.  相似文献   

4.
Members of the integrase family site-specific recombinases (also called the tyrosine family) bring about recombination in two steps by exchanging pairs of single strands at a time. The product of the first exchange reaction is a four-way DNA junction, the Holliday intermediate. The conformational dynamics by which the recombination complex "isomerizes" from the Holliday-forming to the Holliday-resolving mode are not well understood. Experiments with the lambda Int and Escherichia coli XerC/XerD systems imply that the strand configurations at the branch point of the protein-free junction dictate the resolution mode in the protein-bound junction. We have examined the question of strand bias during resolution for the Flp system by using a series of synthetic Holliday junctions that are conformationally constrained by local sequences or by strand tethering. We have not observed a strong resolution bias in favor of the strands designed to assume the "crossed" configuration within the unbound junction. The resolution patterns with antiparallel junctions in a variety of substrate contexts reveal either parity in strand choice, or only modest disparity. On the other hand, the highly biased resolutions observed in the case of tethered parallel junctions can be explained by the non-equivalence in protein occupancy of the DNA arms of these substrates and/or inefficient conversion of cleavage events to recombinants at the tethered ends.  相似文献   

5.
RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing and strand exchange at the single-molecule level in the absence of force. TPM experiments measure the tethered bead Brownian motion indicative of the DNA tether length change resulting from RecA binding and dissociation. Experiments with beads labeled on either the invading strand or the outgoing strand showed that DNA pairing and strand exchange occurs successfully in the presence of either ATP or its non-hydrolyzable analog, ATPγS. The strand exchange rates and efficiencies are similar under both ATP and ATPγS conditions. In addition, the Brownian motion time-courses suggest that the strand exchange process progresses uni-directionally in the 5′-to-3′ fashion, using a synapse segment with a wide and continuous size distribution.  相似文献   

6.
In Xer site-specific recombination, two related recombinases, XerC and XerD, mediate the formation of recombinant products using Holliday junction-containing DNA molecules as reaction intermediates. Each recombinase catalyses the exchange of one pair of specific strands. By using synthetic Holliday junction-containing recombination substrates in which two of the four arms are tethered in an antiparallel configuration by a nine thymine oligonucleotide, we show that XerD catalyses efficient strand exchange only when its substrate strands are 'crossed'. XerC also catalyses very efficient strand exchange when its substrate strands are 'crossed', though it also appears to be able to mediate strand exchange when its substrate strands are 'continuous'. By using chemical probes of Holliday junction structure in the presence and absence of bound recombinases, we show that recombinase binding induces unstacking of the bases in the centre of the recombination site, indicating that the junction branch point is positioned there and is distorted as a consequence of recombinase binding.  相似文献   

7.
In this work we have developed a novel electrochemical biosensor for the detection of alkaline phosphatase (AP) by the use of two complementary DNA probes (DNA 1 and DNA 2) coupled with λ exonuclease (λ exo). Firstly, the 5'-phosphoryl end of DNA 1 is dephosphorylated by AP. Then DNA 1 hybridizes with DNA 2, previously modified on a gold electrode surface. In this double-strand DNA, DNA 2 strand will be promptly cleaved by λ exo with its phosphoryl at the 5' end. After the DNA 2 strand is completely digested, DNA 1 will be released from the double strands and then hybridizes with another DNA 2 strand on the electrode surface, thus the cycle of the release of DNA 1 and the digestion of DNA 2 continues. Since the DNA probes may absorb hexaammineruthenium(III) chloride, the electrochemical species, and the removal of the DNA 2 strand from the electrode surface will result in the decrease of the detected electrochemical signal, which is initially activated by AP, an electrochemical biosensor to assay the activity of AP is proposed in this work. This method may have a linear detection range from 1 to 20 unit/mL with a detection limit of 0.1 unit/mL, and the detection of the enzymatic activity in complex biological fluids can also be realized.  相似文献   

8.
DNA molecules tethered inside a protein pore can be used as a tool to probe distance and electrical potential. The approach and its limitations were tested with alpha-hemolysin, a pore of known structure. A single oligonucleotide was attached to an engineered cysteine to allow the binding of complementary DNA strands inside the wide internal cavity of the extramembranous domain of the pore. The reversible binding of individual oligonucleotides produced transient current blockades in single channel current recordings. To probe the internal structure of the pore, oligonucleotides with 5' overhangs of deoxyadenosines and deoxythymidines up to nine bases in length were used. The characteristics of the blockades produced by the oligonucleotides indicated that single-stranded overhangs of increasing length first approach and then thread into the transmembrane beta-barrel. The distance from the point at which the DNA was attached and the internal entrance to the barrel is 43 A, consistent with the lengths of the DNA probes and the signals produced by them. In addition, the tethered DNAs were used to probe the electrical potential within the protein pore. Binding events of oligonucleotides with an overhang of five bases or more, which threaded into the beta-barrel, exhibited shorter residence times at higher applied potentials. This finding is consistent with the idea that the main potential drop is across the alpha-hemolysin transmembrane beta-barrel, rather than the entire length of the lumen of the pore. It therefore explains why the kinetics and thermodynamics of formation of short duplexes within the extramembranous cavity of the pore are similar to those measured in solution, and bolsters the idea that a "DNA nanopore" provides a useful means for examining duplex formation at the single molecule level.  相似文献   

9.
DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.  相似文献   

10.
《Biophysical journal》2022,121(5):731-741
The outer membrane protein G (OmpG) nanopore is a monomeric β-barrel channel consisting of seven flexible extracellular loops. Its most flexible loop, loop 6, can be used to host high-affinity binding ligands for the capture of protein analytes, which induces characteristic current patterns for protein identification. At acidic pH, the ability of OmpG to detect protein analytes is hampered by its tendency toward the closed state, which renders the nanopore unable to reveal current signal changes induced by bound analytes. In this work, critical residues that control the pH-dependent gating of loop 6 were identified, and an OmpG nanopore that can stay predominantly open at a broad range of pHs was created by mutating these pH-sensitive residues. A short single-stranded DNA was chemically tethered to the pH-insensitive OmpG to demonstrate the utility of the OmpG nanopore for sensing complementary DNA and a DNA binding protein at an acidic pH.  相似文献   

11.
12.
We have developed a strategy for preparing tethered lipid bilayer membrane patches on solid surfaces by DNA hybridization. In this way, the tethered membrane patch is held at a controllable distance from the surface by varying the length of the DNA used. Two basic strategies are described. In the first, single-stranded DNA strands are immobilized by click chemistry to a silica surface, whose remaining surface is passivated to prevent direct assembly of a solid supported bilayer. Then giant unilamellar vesicles (GUVs) displaying the antisense strand, using a DNA–lipid conjugate developed in earlier work [Chan, Y.-H.M., van Lengerich, B., et al., 2008. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3 (2), FA17–FA21], are allowed to tether, spread and rupture to form tethered bilayer patches. In the second, a supported lipid bilayer displaying DNA using the DNA–lipid conjugate is first assembled on the surface. Then GUVs displaying the antisense strand are allowed to tether, spread and rupture to form tethered bilayer patches. The essential difference between these methods is that the tethering hybrid DNA is immobile in the first, while it is mobile in the second. Both strategies are successful; however, with mobile DNA hybrids as tethers, the patches are unstable, while in the first strategy stable patches can be formed. In the case of mobile tethers, if different length DNA hybrids are present, lateral segregation by length occurs and can be visualized by fluorescence interference contrast microscopy making this an interesting model for interactions that occur in cell junctions. In both cases, lipid mobility is high and there is a negligible immobile fraction. Thus, these architectures offer a flexible platform for the assembly of lipid bilayers at a well-defined distance from a solid support.  相似文献   

13.
The interaction of a stable branched DNA molecule with an intercalative drug is probed by hydroxyl radical scission. Methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)], consisting of an intercalating ring system tethered to EDTA.Fe(II), produces the hydroxyl radicals by means of a Fenton reaction. The cleavage patterns of each labeled strand in a branched tetramer of four 16-mers are compared with those of the same strands in unbranched duplex controls. Strong differences between the profiles corresponding to scission of branched and duplex DNA molecules are seen in each of the strands at low MPE/DNA ratios. A specific site in the branched structure interacts preferentially with the drug, while other regions of the molecule are protected from cleavage. At 4 degrees C, cutting at strand positions demarcating the site of enhanced affinity is observed to be 60-100% more efficient than at the corresponding sequence positions in the control duplex DNA molecules; the degree of protection is comparable. Cleavage in the vicinity of the preferred site occurs at residues flanking the branch point. The reactive Fe(II) group appears to be centered within two residues of the branch point, and the site of preferential intercalation may be between the two base pairs abutting the branch point in one of the two helical domains. The pattern of preferential cutting at this site is eliminated in the presence of excess propidium diiodide, another intercalative drug.  相似文献   

14.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

15.
Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro.  相似文献   

16.
17.
The annealing properties as measured by the restoration of transforming activity and hypochromicity of methylated albumin-kieselguhr (MAK)-fractionated complementary strands of Bacillus subtilis deoxyribonucleic acid (DNA) are presented. Temperature-absorbance measurements performed on annealed mixtures of various L and H strand fractions indicated the existence of a complementarity gradient between the two MAK peaks. The markers purA16, leu-8, metB(5), thr-5, and the linked marker hisB(2)-try-2 exhibited different bimodal distributions on MAK columns. The transforming efficiency of heteroduplex mixtures, prepared by cross-annealing resolved complementary strands of wild-type and recipient DNA, was compared. The transforming efficiency of the wild-type L and H strands was equal in one preparation and unequal in a second preparation. It was found that in the second strand preparation the heteroduplex DNA containing the H strand from wild type was more efficient for all of the markers tested. The variations in transforming efficiencies of the complementary strands in heteroduplex molecules reported here and by others are due in part to strands of unequal length and probably to the self-annealing property of the H strands. At present, no conclusion could be made regarding the existence of strand selection bias during integration of donor DNA in competent B. subtilis cells.  相似文献   

18.
Solid-state nanopores have received increasing interest over recent years because of their potential for genomic screening and sequencing. In particular, small nanopores (2-5 nm in diameter) allow the detection of local structure along biological molecules, such as proteins bound to DNA or possibly the secondary structure of RNA molecules. In a typical experiment, individual molecules are translocated through a single nanopore, thereby causing a small deviation in the ionic conductance. A correct interpretation of these conductance changes is essential for our understanding of the process of translocation, and for further sophistication of this technique. Here, we present translocation measurements of double-stranded DNA through nanopores down to the diameter of the DNA itself (1.8-7 nm at the narrowest constriction). In contrast to previous findings on such small nanopores, we find that single molecules interacting with these pores can cause three distinct levels of conductance blockades. We attribute the smallest conductance blockades to molecules that briefly skim the nanopore entrance without translocating, the intermediate level of conductance blockade to regular head-to-tail translocations, and the largest conductance blockades to obstruction of the nanopore entrance by one or multiple (duplex) DNA strands. Our measurements are an important step toward understanding the conductance blockade of biomolecules in such small nanopores, which will be essential for future applications involving solid-state nanopores.  相似文献   

19.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of abasic lesions at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. The rate of DNA incision was reduced by factors of 350, 250, 60, and 10 when abasic sites replaced the -1N, +1T, +2T, and +4C bases of the scissile strand, but abasic lesions at +5C and +3C had little or no effect. Abasic lesions in the nonscissile strand in lieu of +4G, +3G, +2A, and +1A reduced the rate of cleavage by factors of 130, 150, 10, and 5, whereas abasic lesions at +5G and -1N had no effect. The striking positional asymmetry of abasic interference on the scissile and nonscissile strands highlights the importance of individual bases, not base pairs, in promoting DNA cleavage. The rate of single-turnover DNA religation by the covalent topoisomerase-DNA complex was insensitive to abasic sites within the CCCTT sequence of the scissile strand, but an abasic lesion at the 5'-OH nucleoside (-1N) of the attacking DNA strand slowed the rate of religation by a factor of 600. Nonscissile strand abasic lesions at +1A and -1N slowed the rate of religation by factors of approximately 140 and 20, respectively, and strongly skewed the cleavage-religation equilibrium toward the covalent complex. Thus, abasic lesions immediately flanking the cleavage site act as topoisomerase poisons.  相似文献   

20.
MOTIVATION: With the potential availability of nanopore devices that can sense the bases of translocating single-stranded DNA (ssDNA), it is likely that 'reads' of length approximately 10(5) will be available in large numbers and at high speed. We address the problem of complete DNA sequencing using such reads.We assume that approximately 10(2) copies of a DNA sequence are split into single strands that break into randomly sized pieces as they translocate the nanopore in arbitrary orientations. The nanopore senses and reports each individual base that passes through, but all information about orientation and complementarity of the ssDNA subsequences is lost. Random errors (both biological and transduction) in the reads create further complications. RESULTS: We have developed an algorithm that addresses these issues. It can be considered an extreme variation of the well-known Eulerian path approach. It searches over a space of de Bruijn graphs until it finds one in which (a) the impact of errors is eliminated and (b) both possible orientations of the two ssDNA sequences can be identified separately and unambiguously.Our algorithm is able to correctly reconstruct real DNA sequences of the order of 10(6) bases (e.g. the bacterium Mycoplasma pneumoniae) from simulated erroneous reads on a modest workstation in about 1 h. We describe, and give measured timings of, a parallel implementation of this algorithm on the Cray Multithreaded Architecture (MTA-2) supercomputer, whose architecture is ideally suited to this 'unstructured' problem. Our parallel implementation is crucial to the problem of rapidly sequencing long DNA sequences and also to the situation where multiple nanopores are used to obtain a high-bandwidth stream of reads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号