首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The properties of the giant axon of the squid Loligo pealii were studied at different hydrostatic pressures from 14.7 to 16,000 psi. At 4000 psi the resting potential, the membrane resistance, membrane capacity, the conduction velocity, the amplitude of the action potential, and the maximal change in the membrane impedance during activity were only slightly affected. At the same pressure the duration of the falling phase of the action potential was increased by about 40 to 60 per cent and the duration of the rising phase by about 20 to 35 per cent. The duration of the membrane impedance change during activity was increased by 50 to 100 per cent at 4000 psi. At pressures even slightly above atmospheric the threshold membrane current was appreciably reduced. At about 3000 to 7000 psi the fiber fired spontaneously. At pressures considerably above 5000 psi the membrane resistance decreased to about one-half to one-third the original value. The narcotizing effect upon the nerve fiber of 3 to 7 per cent ethanol was partly or almost completely opposed by low temperatures or high pressures.  相似文献   

2.
The theory developed in this paper shows that the propagation of spike potential along a nerve fiber and the conduction of an electric wave along an inert inorganic conductor follow a common quantitative relationship. This result gives further support to the belief that propagation of excitation is an electrical process. The basic idea of the theory is derived from the consideration that velocity has, by its mathematical definition, a local meaning; conduction in a nerve is completely determined by the local characteristics of the latter, as well as those of the wave. The final formula derived does not make use of any other field of science beyond the fundamental principles of electricity. It gives the conduction velocity in terms of the electric characteristics of the fiber and of the duration of the spike potential. The formula is in agreement with the known dependence of the conduction velocity on various parameters characterizing the axon. The computed velocity agrees with the measured ones on the squid giant axon, crab nerve axon, frog muscle fiber and Nitella cell. The membrane inductance appears as a velocity controling agent which prevents also a possible distortion of the spike potential during conduction. The structural meaning of the electric characteristics of the axon membrane is discussed from the viewpoint of the diffusion theory. A formula for the velocity of spread of the electrotonus is also derived.  相似文献   

3.
The effect of varying membrane capacitance, conductance, and rate constants on the properties of the nerve impulse is considered in terms of the degree of regeneration in the Hodgkin-Huxley model for the squid giant axon. It is shown through computer simulation that reducing regeneration generally increases the duration of the action potential and decreases its amplitude, rate of rise, and conduction velocity. The threshold becomes much less sharp and the amplitude of the response of a patch of membrane grades with stimulus strength. A second stimulus, applied shortly after a first stimulus, considerably perturbs the membrane potential from its original time-course. Under certain conditions, the nerve signal can propagate with a small decrement.  相似文献   

4.
The tubular heart of tunicates is composed of a single layer of myoendothelial cells. The direction of contraction reverses every few minutes. The conduction times in both directions are the same. Conduction velocity was greatest in the middle of the arms of the V-shaped heart and slowest in the apex. The greater the heart length, the greater was the conduction velocity. The Q10 of conduction velocity was 2–2.3. Removal of the raphe which attaches the heart to the pericardium and removal of a line of undifferentiated cells opposite the raphe did not change the conduction velocity or prevent the heart from reversing the direction of conduction. The median resting potential of 42 cells was -71 mv and the median action potential was 75 mv. At 20°C the duration of the action potential was 1.2 sec and the maximal rate of depolarization was 3–10 v/sec. An increase in the beat frequency produced by electrically stimulating the heart decreased the resting potential, rate of rise, the duration, and the overshoot of the action potential. The shape of the action potential was sometimes different in the two directions of conduction. The electrophysiological evidence indicates only one cell type and suggests that the mode of the spread of excitation is by local current flow from cell to cell.  相似文献   

5.
The action potential which elicits luminescence in Noctiluca is recorded from the flotation vacuole as a transient all-or-none hyperpolarization in response to either local or general application of inward (bath to vacuole) current. Experiments were performed to determine whether the unorthodox polarities of both the stimulus current and the potential response resulted from uncommon bioelectric mechanisms or from special morphological features of this species. The findings all indicate that the action potential belongs to the familiar class of responses which have their origin in voltage- and time-dependent selective increases in membrane permeability, and that morphological factors account for the observed deviations from normal behavior. Both the stimulus and the response have orthodox polarities provided the vacuole is designated as an "external" extracytoplasmic compartment. Differential recording between vacuole and cytoplasm showed that the action potential occurs across the vacuolar membrane, with the cytoplasmic potential, which at rest is negative with respect to the vacuole, overshooting zero and reversing sign to become transiently electropositive. The rising phase of the action potential therefore depends on active current flow through the vacuolar membrane from the vacuole into the cytoplasm. Propagation of the action potential over the subspherical cell from the locus of stimulation is thought to depend largely on the core conductor properties of the thin perivacuolar shell of cytoplasm which is bounded on its inner surface by the excitable membrane and on its outer surface by inexcitable membranes.  相似文献   

6.
While the effects of local anaesthetics on axonal conduction and axonal membrane have been extensively studied, there is little information about the actions of these agents on nerve cell soma. Therefore, the effects of the amide local anaesthetic bupivacaine on the electrophysiologic properties of the nerve cell soma were studied on isolated superfused superior cervical ganglia of rats. Administration of 100-200 nM of bupivacaine to the preparation produced marked changes in membrane properties of the cell soma. The resting membrane potential did not change, but the membrane resistance decreased 20% (P less than 0.01). The firing threshold, the action potential duration at 50% of maximal amplitude, and the intracellular current threshold for firing the cells increased significantly (P less than 0.01), while the action potential amplitude decreased significantly (P less than 0.01), before its complete blockade. The results show that the cell soma is a major site of action of local anaesthetics. The implication of the results is that when local anaesthetics are applied to areas where cell bodies and processes (axons and dendrites) are present together, such as during celiac plexus block, lumbar sympathetic block, stellate ganglion block, etc., they will all be effectively depressed and/or blocked.  相似文献   

7.
The myelinated giant nerve fiber of the shrimp, Penaeus japonicus, is known to have the fastest velocity of saltatory impulse conduction among all nerve fibers so far studied, owing to its long distances between nodal regions and large diameter. For a better understanding of the basis of this fast conduction, a medial giant fiber of the ventral nerve cord of the shrimp was isolated, and ionic currents of its presynaptic membrane (a functional node) were examined using the sucrose-gap voltage-clamp method. Inward currents induced by depolarizing voltage pulses had a maximum value of 0.5 μA and a reversal potential of 120 mV. These currents were completely suppressed by tetrodotoxin and greatly prolonged by scorpion toxin, suggesting that they are the Na current. Both activation and inactivation kinetics of the Na current were unusually rapid in comparison with those of vertebrate nodes. According to a rough estimation of the excitable area, the density of Na current reached 500 mA/cm2. In many cases, the late outward currents were induced only by depolarizing pulses larger than 50 mV in amplitude. The slope conductance measured from late currents were mostly smaller than that measured from the Na current, suggesting a low density of K channels in the synaptic membrane. These characteristics are in good harmony with the fact that the presynaptic membrane plays a role as functional node in the fastest impulse conduction of this nerve fiber.  相似文献   

8.
The membrane excitability changes as well as the underlying mechanisms of these changes in a normal and in a systematically paranodally demyelinated nerve fibre have been investigated by paired stimulation during the first 30 ms of the recovery cycle. The ionic current kinetics determining the observed changes in the action potential parameters are presented also. The simulation of the conduction in the normal fibre is based on the Frankenhaeuser and Huxley (1964) and Goldman and Albus (1968) equations, while in the case of a demyelinated fibre according to the same equations modified by Stephanova (1988a). It has been shown for the demyelinated membrane that increased demyelination increases both the threshold current for the second potential as well as the absolute refractory period. With increasing interpulse interval, the subnormality of the membrane excitability is followed by supernormality in the case of the demyelinated membrane. For the recovery cycle of 30 ms under consideration no supernormality of the normal membrane excitability is obtained. With interpulse interval from 8.8 to 10.9 ms, the highest degree of demyelination (l=30 m) is accompanied by a refractory period of transmission. The membrane properties of the normal and demyelinated fibres recover 20 ms after the first pulse. For short interpulse intervals, the amplitude of the second action potential is decreased, and a slower propagation velocity is obtained. The most sensitive phenomenon is the excitability of the demyelinated membrane, which remains unrecovered 30 ms after the first pulses has been applied.  相似文献   

9.
A mathematical model of the electrical properties of a myelinated nerve fiber is given, consisting of the Hodgkin-Huxley ordinary differential equations to represent the membrane at the nodes of Ranvier, and a partial differential cable equation to represent the internodes. Digital computer solutions of these equations show an impulse arising at a stimulating electrode and being propagated away, approaching a constant velocity. Action potential curves plotted against distance show discontinuities in slope, proportional to the nodal action currents, at the nodes. Action potential curves plotted against time, at the nodes and in the internodes, show a marked difference in steepness of the rising phase, but little difference in peak height. These results and computed action current curves agree fairly accurately with published experimental data from frog and toad fibers.  相似文献   

10.
目的:探讨采用肌电图检查评估腕管综合征的手术治疗效果。方法:选取35例(患侧手共39侧)临床确诊为腕管综合征并接受腕管切开减压术治疗的患者,于手术前后分别行肌电图检查,应用正中神经传导检查和拇短展肌针极肌电图检查,分析患者手术前和手术后腕部正中神经功能的变化情况。结果:手术后,患者正中神经感觉传导潜伏期异常率(33%)、正中神经运动传导潜伏期异常率(36%)较手术前(72%、74%)明显下降(P0.05),正中神经感觉传导波幅(7.40±5.05)较手术前(4.86±3.60)显著降低(P0.001),拇短展肌静息状态下失神经电位的异常率(69%)、重收缩时募集电位异常率(13%)均较手术前(85%、26%)明显下降(P0.05)。患者手术前后正中神经感觉传导速度和运动传导速度对比差异无统计学意义(P0.05)。结论:腕管切开减压术可解除正中神经卡压状态,明显恢复正中神经功能,增强拇短展肌肌力,临床治疗效果好。肌电图检查可为腕管综合征患者手术治疗效果的评估提供客观的依据。  相似文献   

11.
Introduction and objectiveNerve conduction study is the most sensitive test for diagnosis of carpal tunnel syndrome (CTS). This test is normal in some patients with mild CTS. Median nerve conduction study evaluation after a provocative test (e.g. wrist flexion) may be helpful for diagnosis of mild CTS. This study aimed to determine the effect of wrist flexion on median nerve conduction in patients suspected to CTS and in healthy subjects.Materials and methodsIn this case-control study, 20 patients (20 hands) with clinical signs of CTS and normal routine electrodiagnosis test results and 20 healthy subjects were investigated. Measured parameters included: median nerve distal sensory latency (DSL), nerve conduction velocity (NCV) across wrist, compound nerve action potential (CNAP), distal motor latency (DML) and compound muscle action potential amplitude (CAMPAMP). The above noted parameters were measured before and after 5 min of full wrist flexion. Data were analyzed using paired T-test.ResultsDistal sensory latency increment and NCV decrimental after 5 min of wrist flexion in the patients group were statistically significant (p < 0.01). The same parameters did not show significant incremental or detrimental changes in the control group.ConclusionMedian nerve DSL and NCV measurement after 5 min of wrist flexion may be helpful in determining more sensitive parameters in the electrodiagnosis of CTS.  相似文献   

12.
Prostaglandin E1 (PGE1) altered both the amplitude and conduction velocity of the compound action potential in frog sciatic nerve. Concentrations up to 1 ng/ml increased both amplitude and conduction velocity but at higher concentrations both effects were reversed. Procaine, chloroquine, indomethacin and SC19220 all reduced action potential amplitude and conduction velocity. These local anaesthetic type actions could be partially or completely prevented by PGE1.  相似文献   

13.
Prostaglandin E1 (PGE1) altered both the amplitude and conduction velocity of the compound action potential in frog sciatic nerve. Concentrations up to 1 ng/ml increased both amplitude and conduction velocity but at higher concentrations both effects were reversed. Procaine, chloroquine, indomethacin and SC19220 all reduced action potential amplitude and conduction velocity. These local anaesthetic type actions could be partially or completely prevented by PGE1.  相似文献   

14.
A cleft model for cardiac Purkinje strands.   总被引:1,自引:0,他引:1       下载免费PDF全文
Conduction of the action potential in cardiac muscle is complicated by its multicellular structure, with narrow intercellular clefts and cell-to-cell coupling. A model is developed from anatomical data to describe cardiac Purkinje strands of variable diameter and different internal arrangements of cells. The admittance of the model is solved analytically and fit to results of cable analysis. Using the extracted specific membrane and cell electrical parameters (Rm = 13 K omega cm2, Cm = 1.5 mu F/cm2, Ri = 100 mu cm, and Re = 50 omega cm), the model correctly predicted conduction velocity and filling of capacitance at the onset of a voltage step. The analysis permits more complete studies of the factors controlling conduction velocity; for instance, the effect on conduction velocity of a capacity in the longitudinal current circuit is discussed. Predictions of the impedance and phase angle were also made. Measurements of the frequency dependence of phase angle may provide a basis for separating cleft membrane properties from those of the surface membrane and may aid the measurement of nonlinear membrane properties in muscle.  相似文献   

15.
目的:近年来腕管综合征发病率逐年升高,然而其慢性、隐匿性不易引起人们的重视,发现时往往已造成较大的危害。本文探讨腕管综合征的神经传导测定对病情评估的临床价值,旨在为患者腕管综合征早期发现和后续治疗提供进一步的临床参考依据。方法:选取我院124例确诊的腕管综合征患者。其中无大鱼际肌萎缩者有64例,并选取平均年龄相近的64例正常人作为对照(组A);有大鱼际肌畏缩者60例,并选取平均年龄相近的60例正常人作为对照(组B)。A、B组均经行神经电图检查,握力测定和两点辨别觉测定,分析神经传导速度改变与感觉、运动功能减退程度的关系。结果:A、B两组患者均有不同程度的神经传导改变:在A组患者神经传导改变中,运动和感觉传导速度(MCV和SCV)轻度下降,运动和感觉电位波幅(CMAP和SNAP)轻度下降,潜伏期(ML)轻度延长;在B组患者神经传导中,运动和感觉传导速度(MCV和SCV)明显下降,运动和感觉电位波幅(CMAP和SNAP)明显下降,潜伏期明显延长。结论:腕管综合征患者不同的临床表现有不同程度的神经电图表现,因此神经电图对神经传导的测定结果对腕管综合征患者的病情有良好的评估价值,值得临床推广。  相似文献   

16.
Membrane Characteristics of the Canine Papillary Muscle Fiber   总被引:3,自引:2,他引:1  
Passive and active responses to intracellular and extracellular stimulation were studied in the canine papillary muscle. The electrotonic potential produced by extracellular polarization with the partition chamber method fitted the time course and the spatial decay expected from the cable theory (the time constant, 3.3 msec; the space constant, 1.2 mm). Contrariwise, spatial decay of the electrotonic potentials produced by intracellular polarization was very short and did not fit the decay curve expected for a simple cable, although only a small difference of time course in the electrotonic potentials produced by intracellular and extracellular polarizations was observed. A similar time course might result from the fact that when current flow results from intracellular polarization, the input resistance is less dependent on the membrane resistance. The foot of the propagated action potential rose exponentially with a time constant of 1.1 msec and a conduction velocity of 0.68 m/sec. The membrane capacity was calculated from the time constant of the foot potential and the conduction velocity to be 0.76 µF/cm2. The responses of the papillary muscle membrane to intracellular stimulation differed from those to extracellular stimulation applied with the partition method in the following ways: higher threshold potential, shorter latency for the active response, linearity of the current-voltage relationship, and no reduction in the membrane resistance at the crest of the action potential during current flow.  相似文献   

17.
Neurons in the heart ganglion of the mantis shrimp (a stomatopod crustacean) are functionally tightly linked together. The extracellular action potential from the whole trunk very often shows a complex form, but the response is all-or-none to the applied stimulus, indicating that the excitation in one neuron spreads very rapidly to all others. Application of isotonic MgCl2 solution or repetitive stimulation sometimes separates the spike into its components. The resting potential of the soma membrane is 50 to 60 mv. External stimulation elicits a spike of 60 to 80 mv amplitude with a step on its rising phase. Hyperpolarization reveals one more inflection on the rising phase. These inflections divide the soma action potential into three parts, A1, A2, and B spikes in that order from the foot. The B spike disappears on increasing the hyperpolarization, but A1 and A2 remain, indicating that B originates from the soma membrane, whereas A1 and A2 originate from the two axons of the bipolar cell. Thus the impulse invades the soma from two directions, one from the stimulated side, the other from the other side via the "parallel axons" and the "side-connections;" the latter are presumed to interconnect the axons. When the parallel axons are cut, conduction takes place across the soma with a greatly reduced safety factor and a prolonged conduction time. Neuron-to-neuron transmission takes place in either direction.  相似文献   

18.
Conduction velocity is a complex physiological process that integrates the active and passive properties of the excitable cell. The relations between these properties in determining the conduction velocity are not intuitively obvious, and models have been used frequently to illustrate important relationships. To study the relationships of important parameters and to evaluate commonly used models, we changed conduction velocity experimentally in sheep cardiac Purkinje strands by reducing extracellular Na systematically. Cable analyses were also performed to obtain passive membrane and cable properties. Resting membrane resistance and capacitance did not change, nor did core resistance. Active properties measured in addition to conduction velocity included maximal upstroke velocity, action potential height, time constant of the foot, peak inward current, and upstroke power. With reduction in extracellular Na, all of these parameters of the action potential changed nonlinearly and not in direct proportion to the change in conduction velocity. The only simple relation found was a linear relationship between maximal upstroke velocity and peak inward current, normalized by the capacity of the foot. Models based on the cable equation and the wave equation offer a basis for quantitative analysis of conduction, and these data can be used to test the models.  相似文献   

19.
(1) The rising phase of minature endplate currets was recorded at the frog's neuromuscular junction using both the two electrode voltage clamp and a single external electrode, or Strickholm, voltage clamp. (2) The Q(10) of the miniature endplate current rising phase was 2.3 in a variety of solutions selected to alter presynaptic behavior. (3) Increasing the solution's viscosity by an amount sufficient to slow the diffusion coefficient of acetylcholine by a third has no effect on the duration of the rising or the decay phase. This solution does seem to further slow the miniature endplate current decay phase, but not the rising phase, after inhibition of the acetylcholinesterase. (4) As the membrane potential is made more positive, the miniature endplate current rising phase is prolonged, with an e-fold slowing per 170 mV change. (5) It is concluded that neither presynaptic nor subsynaptic events determine the rising phase of miniature endplate currents at the frog neuromuscular junction. Rather, the limiting step occurs within the membrane and is most likely a change in the binding constant of the receptor for the acetylcholine molecule.  相似文献   

20.
The action of chlordimeform on the nerve-muscle preparation of the larvae of the waxmoth Galleria mellonella has been studied by means of microelectrodes. Exitatory junction potential evoked by nerve stimulation is reversibly suppressed by 2 × 10?3 M chlordimeform, and spike-like component is abolished. The resting membrane potential of the muscle fibre and the action potential from the nerve terminal are not affected at 5 × 10?3 M chlordimeform. The depolarizing membrane response caused by outward current and the effective membrane resistance are not appreciably affected. It appears that chlordimeform exerts its blocking action on the neuromuscular junction rather than the conductance mechanism of muscle fibre membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号