首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of three water table (WT) depths (0, 15 and 40 cm) and calcium peroxide (Calper) on the growth and yield of cowpea (Vigna unguiculata, L.) and soybean (Glycine max) were investigated in field lysimeters for a sandy loam soil. Cowpea growth was the best at 40 cm WT depth. Leaf area, plant height, dry matter production, number of leaves and pods, grain yield and consumptive water use of cowpea increases with deeper (lower) WT depth. Application of calcium peroxide improved per cent emergence, leaf area, dry matter, number of leaves and pods, weight of 100 seeds, grain yield and water use in cowpea. The optimum WT depth for vegetative growth of soybean was 15 cm, although the highest grain yield was obtained at 40 cm WT depth. Number of pods, grain yield and water use efficiency of soybean increased with deeper water table depth. Application of calcium peroxide to soybean increased number of leaves and pods per plant, and grain yield for the 15 cm WT depth treatment.  相似文献   

2.
This investigation demonstrated potential detrimental side effects of glyphosate on plant growth and micronutrient (Mn, Zn) status of a glyphosate-resistant (GR) soybean variety (Glycine max cv. Valiosa), which were found to be highly dependent on the selected growth conditions. In hydroponic experiments with sufficient Mn supply [0.5 μM], the GR cv. Valiosa produced similar plant biomass, root length and number of lateral roots in the control treatment without glyphosate as compared to its non-GR parental line cv. Conquista. However, this was associated with 50% lower Mn shoot concentrations in cv. Conquista, suggesting a higher Mn demand of the transgenic cv. Valiosa under the selected growth conditions. Glyphosate application significantly inhibited root biomass production, root elongation, and lateral root formation of the GR line, associated with a 50% reduction of Mn shoot concentrations. Interestingly, no comparable effects were detectable at low Mn supply [0.1 μM]. This may indicate Mn-dependent differences in the intracellular transformation of glyphosate to the toxic metabolite aminomethylphosphonic acid (AMPA) in the two isolines. In soil culture experiments conducted on a calcareous loess sub-soil of a Luvisol (pH 7.6) and a highly weathered Arenosol (pH 4.5), shoot biomass production and Zn leaf concentrations of the GR-variety were affected by glyphosate applications on the Arenosol but not on the calcareous Loess sub-soil. Analysis of micronutrient levels in high and low molecular weight (LMW) fractions (80% ethanol extracts) of young leaves revealed no indications for internal immobilization of micronutrients (Mn, Zn, Fe) by excessive complexation with glyphosate in the LMW phase.  相似文献   

3.
Summary Humidity, at the young nodes of white clover stolones, varied by enclosing nodes in the atmosphere above a range of saturated solutions, inhibited root initiation at 85% RH or less. The threshold humidity for root initiation increased to about 93% on young nodes subject to moisture stress or old nodes on well watered plants in which root initiation had been previously suppressed by low humidity.Roots at old nodes and at the three youngest on stolons were either subject to moisture stress or adequately watered. Growth of young roots and N2-fixation were more adversely affected by the direct effects of drought than by subjecting old roots to drought. Although old roots under stress affected new root growth and N2-fixation, length of roots and lateral root number were little affected. By contrast stolon growth was affected more by stress to old roots than to young nodes, although after 6 weeks the contribution made by young roots to stolon growth was almost as high as old roots.The data suggest that deep roots at old nodes will allow clover stolons to grow during drought due to the high acropetal movement of water but initiation of roots and functioning of young roots at the soil surface will be adversely affected, with possible implications on the persistence of clover.  相似文献   

4.
The morphological and physiological responses of barley to moderate Pi deficiency and the ability of barley to grow on phytate were investigated. Barley cultivars (Hordeum vulgare L., Promyk, Skald and Stratus) were grown for 1–3 weeks on different nutrient media with contrasting phosphorus source: KH2PO4 (control), phytic acid (PA) and without phosphate (−P). The growth on −P medium strongly decreased Pi concentration in the tissues; culture on PA medium generally had no effect on Pi level. Decreased content of Pi reduced shoot and root mass but root elongation was not affected; Pi deficit had slightly greater impact on growth of barley cv. Promyk than other varieties. Barley varieties cultured on PA medium showed similar growth to control. Extracellular acid phosphatase activities (APases) in −P roots were similar to control, but in PA plants were lower. Histochemical visualization indicated for high APases activity mainly in the vascular tissues of roots and in rhizodermis. Pi deficiency increased internal APase activities mainly in shoot of barley cv. Stratus and roots of cv Promyk; growth on PA medium had no effect or decreased APase activity. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoforms may be affected by Pi deficiency or growth on PA medium; two of four isoforms in roots were strongly induced by conditions of Pi deficit, especially in barley cv. Promyk. In conclusion, barley cultivars grew equally well both on medium with Pi and where the Pi was replaced with phytate and only slightly differed in terms of acclimation to moderate deficiency of phosphate; they generally used similar pools of acid phosphatases to acquire Pi from external or internal sources.  相似文献   

5.
Prosopis flexuosa trees in the Monte Desert grow in dune and inter-dune valleys, where the water table is located at 6–14 m depth. We asked whether trees in the dunes, which are less likely to access the water table, present a coarse surface root architecture that might favor the exploration / exploitation of dune resources, compensating for water table inaccessibility. We characterized the architecture of surface roots of valley and dune trees, together with the soil environment. The dune held 50 % less and deeper gravimetric soil water (along a 4 m profile), 3-times less organic matter, 2-times less available phosphorous, and a sharper contrast of ammonium and nitrate concentration between plant canopies and uncovered soil than the valley. Coarse surface roots of dune trees were highly branched and grew tortuously at 0.56?±?0.16 m depth before sinking downward near the tree crown, suggesting an intensive exploitation of the ephemeral, deep, and canopy-linked resources. In contrast, trees from the valley spread their profuse and less branched surface roots mainly horizontally at 0.26?±?0.08 m depth, several meters outside the crown probably exploring this resource-rich site. A model for the environmental control of root architecture together with potential ecological effects is discussed.  相似文献   

6.
Summary Experiments were done to test whether N fixation is more sensitive to high soil temperatures in common bean than in cowpea or soybean. Greenhouse experiments compared nodulation, nitrogenase activity, growth and nitrogen accumulation of several host/strain combinations of common bean with the other grain legumes and with N-fertilization, at various root temperatures. Field experiments compared relative N-accumulation (in symbiotic relative to N-fertilized plants) of common bean with cowpea under different soil thermal regimes. N-fertilized beans were unaffected by the higher temperatures, but nitrogen accumulation by symbiotic beans was always more sensitive to high root temperatures (33°C, 33/28°C, 34/28°C compared with 28°C) than were cowpea and soybean symbiosis. Healthy bean nodules that had developed at low temperatures functioned normally in acetylene reduction tests done at 35°C. High temperatures caused little or no suppression of nodule number. However, bean nodules produced at high temperatures were small and had low specific activity. ForP. vulgaris some tolerance to high temperature was observed among rhizobium strains (e.g., CIAT 899 was tolerant) but not among host cultivars. Heat tolerance ofP. acutifolius andP. lunatus symbioses was similar to that of cowpea and soybean. In the field, high surface soil temperatures did not reduce N accumulation in symbiotic beans more than in cowpea, probably because of compensatory nodulation in the deeper and cooler parts of the soil.  相似文献   

7.
The importance of macrostructure to root growth of ryegrass (L. perenne) seedlings sown on the soil surface was studied in two soils in which the macrostructure had resulted mainly from root growth and macro-faunal activity. Sets of paired soil cores were used, one of each pair undisturbed and the other ground and repacked to the field bulk density. Undisturbed and repacked soils were first compared at equal water potentials in the range −1.9 to −300 kPa. At equal water potential, the undisturbed soil always had the greater strength (penetration resistance), and root growth was always greater in the repacked soil with no macrostructure than it was in the soil with macrostructure intact. At equal high strength (low water potentials) it appeared that root growth was better when soils were structured. When strength was low (high water potentials), root growth was better in the unstructured soil. Soils were then compared during drying cycles over 21 days. The average rate at which roots grew to a depth of 60 mm, and also the final percentage of plants with a root reaching 60 mm depth, was greatest in repacked soils without macrostructure. The species of vegetation growing in the soil before the experiment affected root growth in undisturbed soil; growth was slower where annual grasses and white clover had grown compared with soil which had supported a perennial grass. It appears that relatively few roots locate and grow in the macrostructure. Other roots grow in the matrix, if it is soft enough to be deformed by roots. Roots in the matrix of a structured soil grow more slowly than roots in structureless soil of equal bulk density and water potential. The development of macrostructure in an otherwise structureless soil, of the type studied, is of no advantage to most roots. However, once a macrostructure has developed, the few roots locating suitable macropores are able to grow at low water potential when soil strength is high. The importance of macrostructure to establishing seedlings in the field lies in rapid penetration of at least a few roots to a depth that escapes surface drying during seasonal drought. ei]{gnB E}{fnClothier}  相似文献   

8.
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid‐day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.  相似文献   

9.
Little information is available about the variability of root-derived respiration rate in relation to biotic factors such as photosynthesis and substrate availability in roots. Here we examine the role of decreased carbohydrates availability on root-derived respiration through removal of above ground biomass. Spring wheat (Triticum aestivum L. cv. Longchun 8139) and soybean (Glycina max L. cv. Tianchan 2) were grown in the field under a moveable rain shelter, and subjected to three different water regimes: (1) well-watered control; (2) moderate drought stress, and (3) severe drought stress. Root-derived respiration before and after shoot clipping, and the concentration of total nonstructural carbohydrate, malic and citric acid were measured for spring wheat and soybean. Root-derived CO2 flux and total nonstructural carbohydrate concentration of clipped wheat decreased by 38% and 31%, respectively. However, for soybean the root- derived CO2 flux and total nonstructural carbohydrate concentrations were only 58% and 62% of control, respectively, indicating the root respiration rate was controlled by the availability of carbon in the root. A significant positive correlation between total nonstructural carbohydrate concentration of the root and soil water content was observed in unclipped plants. Total nonstructural carbohydrate contributed 93% of the variance in root-derived respiration. Our results clearly show, that in the field, the availability of carbon substrate in roots determines root-derived respiration and plays a key link between soil moisture and root-derived respiration. A period of time is needed for root respiration to return to “steady-state” after shoot removal and this period needed is strongly dependent on species and soil water content.  相似文献   

10.
土壤深层供水对冬小麦干物质生产的影响   总被引:22,自引:3,他引:22  
采用根系研究装置研究了土壤深层供水对冬小麦干物质生产的影响 .结果表明 ,上层低湿度下层高湿度的处理在小麦灌浆期仍然保持了较高的土壤和叶片含水量 ,具有发达的根系 ,特别是 1m以下的根量在 4个处理中为最高 ,旗叶和穗的干重也最大 ,具有最大的产量潜力 .本研究表明 ,上层土壤较干下层土壤湿润有利于发挥小麦根信号的积极作用 ,平衡水分利用 ,同时通过对土壤水分的合理调节可以促进深层根的发育 ,有利于提高产量和水分利用效率 .  相似文献   

11.
Effect of irrigation frequency on root water uptake in sugar beet   总被引:1,自引:0,他引:1  
A 2-year trial was performed on autumn-sown sugar beet grown in pots in order to study the influence of irrigation frequency on the water used by plants along the soil profile. The outdoor pots, containing one plant each, were 1.3 m high and had circular openings, through which Time Domain Reflectometry (TDR) apparatus wave guides could be inserted. Three irrigation intervals were compared and plants were watered whenever the soil layer explored by roots had lost 30% (SWD1), 50% (SWD2) and 70% (SWD3) of the total available water (TAW). During the irrigation season, the water extracted by the plants from each layer along the soil profile (RWU) was determined by monitoring volumetric soil moisture content (), by TDR. At harvest time, root length density (RLD) along the soil profile was assessed using the Tennant method. The applied irrigation frequencies significantly affected the RWU. With the SWD3 protocol, irrigation was at longer irrigation intervals (9 days) and watering volumes were as high as 84 mm. In this treatment, the plants lost almost 60% of total water from the lower soil layer (0.6–1.0 m). In treatment SWD1, the irrigation interval was very short (3 days), and water extraction from 0.0–0.6 m soil depth was 92.0%. In the intermediate treatment, the irrigation interval was 5.5 days and a more uniform water depletion was observed along the root zone, approximately equal between the 0–0.6 and 0.6–1.0 m soil layer. Water extraction of sugar beet plants at the deeper soil layers in response to long irrigation intervals was related to an increase in water uptake efficiency of the deeper younger roots and not to an increase in root length density, which, on the contrary, decreased. This morpho-physiological acclimatization to progressive soil water deficit was coupled with an increase of the root/shoot ratio.  相似文献   

12.
Influence of soil water deficits on root growth of cotton seedlings   总被引:5,自引:0,他引:5  
Summary Cotton (Gossypium hirsutum L. cv. H14) seedlings were raised in soil of differing soil water content in specially designed pots in which the roots had access to freely available water and nutrients located 2.5 cm below the base of the soil core. The time for root emergence from the soil core and the rate of root growth were measured daily from sowing to harvest. The root and shoot dry weight and leaf water potential were measured at the final harvest 16 days after sowing. As soil water content decreased, the root emerged from the soil earlier and the initial rate of root elongation was faster. In spite of the availability of freely available water, the plants in the soil at low water contents had significantly lower leaf water potentials than those in soil at high water contents. The root: shoot ratio increased as the soil water content decreased. This arose from an absolute increase in root weight, with shoot weight not being significantly affected.  相似文献   

13.

Background

A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments.• The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.  相似文献   

14.
Aluminum toxicity is an important stress factor in acid soils. Growth, respiration and permeability properties of root cells were studied in five cultivars of Lotus corniculatus subjected to aluminum (Al) or low pH stress. The cultivars showed significant differences in root elongation under stress conditions, which correlated with changes in membrane potential (EM) of root cortical cells. A pH drop from 5.5 to 4.0 resulted in significant membrane depolarization and root growth inhibition. The strongest inhibition was observed in cv. São Gabriel (33.6%) and least in cv. UFRGS (25.8%). Application of an extremely high Al concentration (2 mM) stopped the root growth in cv. INIA Draco, while inhibition in cv. UFRGS reached only 75%.The EM values of cortical cells of Lotus roots varied between −115 and −144 mV. Treatment with 250 μM of AlCl3 (pH 4) resulted in rapid membrane depolarization. The extent of the membrane depolarization ranged between 51 mV (cv. UFGRS) and 16 mV (cv. INIA Draco). The membrane depolarization was followed by a loss of K+ from Al-treated roots (2 mM Al) and resulted in a decrease of the diffusion potential (ED). The total amount of K+ in Al-treated roots dropped from 31.4 to 16.8 μmol g−1 FW in sensitive cv. INIA Draco, or from 26.1 to 22.7 μmol g−1 FW in tolerant cv. UFGRS. The rate of root respiration under control conditions as well as under Al treatment was higher in cv. INIA Draco than in cv. UFRGS. Al-induced inhibition of root respiration was 21–34% of the control.  相似文献   

15.
Freshwater isoetids exchanges a high proportion of the photosynthetically produced oxygen over the extensive root system and, therefore, they influence the redox potential (Eh) and phosphorus (P) availability in their sediments. Because isoetids rely on the sediment for P uptake, P may be a key element in controlling the distribution of isoetids. We investigated biomass and P availability to isoetids (Littorella uniflora and Isoetes lacustris) in a transect of five stations across the littoral zone in oligotrophic Lake Kalgaard, Denmark. At the two shallowest stations (0.6 and 1.0 m depth) the redox potential in the low organic rhizosphere sediment was high (>300 mV) and low concentrations of reduced exchangeable iron (Fe) and manganese (Mn) compounds in the sediment and of precipitated Fe and Mn oxides on isoetid roots (plaques) were found. The concentration of sediment P pools was low and so was isoetid P content and isoetid biomass. At intermediate water depth (1.8 m) sediment Eh was high (300 mV) and isoetids showed low root plaque concentrations. However, higher concentration of P pools in the rhizosphere was found at 1.8 m and isoetids showed the highest P content and biomass. At deeper stations (2.8 and 4.6 m depth) Eh was low (<100 mV) in the high organic rhizosphere and high concentrations of plaques were found. The P content in the sediment was high, however, isoetids showed low biomass and low P content. We suggest that the low P content in isoetids growing on P rich organic sediments is partly due to inhibition of the P uptake because of adsorption of P to the oxidized Fe and Mn plaques. However, ratios between oxidized Fe and Fe-bound P, 150 for plaques and 40 for sediment, suggest the isoetids are able to access some of the P that is bound in the plaques. The pools of dissolved P in the porewater were 25–1100 times lower than the estimated annual P requirement for net growth of isoetids while solid fraction P pools were 20–260 times higher than the estimated annual P requirement. Clearly, the oxygen release from isoetid roots decreases the availability of P either by keeping the entire rhizosphere oxidized (low organic sediments) or by the formation of root plaques (high organic sediments).  相似文献   

16.
Laboski  C.A.M.  Dowdy  R.H.  Allmaras  R.R.  Lamb  J.A. 《Plant and Soil》1998,203(2):239-247
Initial field observations revealed a shallow corn (Zea mays L.) root system on a Zimmerman fine sand in a corn/soybean (Glycine max L.) rotation. Since root distribution influences crop water and nutrient absorption, it is essential to identify factors limiting root growth. The objective of this study was to determine the factor(s) limiting corn rooting depth on an irrigated fine sand soil. Bulk density, saturated hydraulic conductivity, and soil water retention were measured on undisturbed soil cores. Corn root distribution assessed at tasseling over a 3-yr period showed an average of 94% of total root length within the upper 0.60 m of soil with 85% in the upper 0.30 m of soil. Mechanical impedance was estimated with a cone penetrometer on two dates with differing water contents. Cone penetrometer measurements greater than 3 MPa indicated mechanical impedance in soil layers extending from 0.15 to 0.35 m deep. Penetration resistance decreased as soil water content increased. However, soil water contents greater than field capacity were required to decrease penetration resistance below the 3 MPa threshold. Such water saturated conditions only occurred for short periods immediately after precipitation or irrigation events, thus roots usually encountered restrictive soil strengths. The soil layer from 0.15 to 0.60 m had high bulk density, 1.57 Mg m-3. This compacted soil layer, with slower saturated hydraulic conductivities (121 to 138 mm hr-1), held more water than the soil above or below it and reduced water movement through the soil profile. Crop water use occurred to a depth of approximately 0.75 m. In conclusion, a compacted soil layer confined roots almost entirely to the top 0.60 m of soil because it had high soil strength and bulk density. The compacted layer, in turn, retained more water for crop use.  相似文献   

17.
Spring wheat [ Triticum aestivum (L). cv. Yecora Rojo] was grown from December 1992 to May 1993 under two atmospheric CO2 concentrations, 550 μmol mol–1 for high-CO2 plots, and 370 μmol mol–1 for control plots, using a Free-Air CO2 Enrichment (FACE) apparatus. In addition to the two levels of atmospheric CO2, there were ample and limiting levels of water supply through a subsurface trip irrigation system in a strip, split-plot design. In order to examine the temporal and spatial root distribution, root cores were extracted at six growth stages during the season at in-row and inter-row positions using a soil core device (86 mm ID, 1.0 m length). Such information would help determine whether and to what extent root morphology is changed by alteration of two important factors, atmospheric CO2 and soil water, in this agricultural ecosystem. Wheat root growth increased under elevated CO2 conditions during all observed developmental stages. A maximum of 37% increase in total root dry mass in the FACE vs. Control plots was observed during the period of stem elongation. Greater root growth rates were calculated due to CO2 enhancement until anthesis. During the early vegetative growth, root dry mass of the inter-row space was significantly higher for FACE than for Control treatments suggesting that elevated CO2 promoted the production of first-order lateral roots per main axis. Then, during the reproductive period of growth, more branching of lateral roots in the FACE treatment occurred due to water stress. Significant higher root dry mass was measured in the inter-row space of the FACE plots where soil water supply was limiting. These sequential responses in root growth and morphology to elevated CO2 and reduced soil water supports the hypothesis that plants grown in a high-CO2 environment may better compensate soil-water-stress conditions.  相似文献   

18.
Nitrate uptake ability by maize roots during and after drought stress   总被引:1,自引:0,他引:1  
Buljovcic  Zaklina  Engels  Christof 《Plant and Soil》2001,229(1):125-135
The effects of different intensities and durations of soil drought and re-watering on the nitrate uptake ability of maize roots were studied. Plants were grown in split-root containers with one part of the root system subjected to different intensities and durations of soil drought and re-watering while the other part of the root system was continuously watered to 23% (w/w) soil water content (70% water capacity). Experiments were performed in split-root containers to maintain a high growth rate, thus ensuring high nutrient demand of the shoot irrespective of the soil water regime. To avoid limitation of nitrate uptake by transport processes in the dry soil, and to ensure a uniform 14N/15N ratio at the root surface, 15N was applied to the roots by placing them into an aerated nutrient solution with 0.5 mM Ca(15NO3)2. Shoot elongation and biomass were only slightly affected by drought in one root compartment when the soil in the other root compartment was kept wet. Therefore, the growth-related nutrient demand of the shoot remained at a high level. At moderate levels of soil drought (10% w/w water content) the ability of the roots for N-uptake was not affected even after 10 d of drought. N-uptake ability was reduced to about 20% of the well-watered control only when the soil water content was decreased to 5%. Total soluble sugar content of the roots increased with increasing soil drought, indicating that low N-uptake ability of roots subjected to severe soil drought was not caused by low assimilate supply from the shoot. Nitrate uptake ability of roots maintained in very dry soil (5% soil water content w/w) even for a prolonged period of 8 d, recovered within 3 d following re-watering. Root growth increased one day after re-watering. A short-term experiment with excised roots formerly subjected to severe soil drought showed that nitrate uptake ability recovered in old and young root segments after 2 d of re-watering. Obviously, the increase in N-uptake ability after re-watering was caused not only by new root growth but also by recovery of the uptake ability of formerly stressed roots.  相似文献   

19.
Abstract: Plant root exudates play important roles in the rhizosphere. We tested three media (nutrient solution, deionized water and CaSO4 solution) for three periods of time (2, 4 and 6 h) for collecting root exudates of soil‐grown rice plants. Nutrient culture solution created complications in the analyses of exudates for total organic C (TOC) by the wet digestion method and of organic acids by HPLC due to the interference by its components. Deionized water excluded such interference in analytical analyses but affected the turgor of root cells; roots of four widely different rice cultivars excreted 20 to 60 % more TOC in deionized water than in 0.01 M CaSO4. Furthermore, the proportion of carbohydrates in TOC was also enhanced. Calcium sulfate solution maintained the osmotic environment for root cells and did not interfere in analytical procedures. Collection for 2 h avoided under‐estimation of TOC and its components exuded by rice roots, which occurred during prolonged exposure. By placing plants in 0.01 M CaSO4 for 2 h, root exudates of soil‐grown traditional, tall rice cultivars (Dular, B40 and Intan), high‐yielding dwarf cultivars (IR72, IR52, IR64 and PSBRc 20), new plant type cultivars (IR65598 and IR65600) and a hybrid (Magat) were collected at seedling, panicle initiation, flowering and maturity and characterized for TOC and organic acids. The exudation rates were, in general, lowest at seedling stage, increased until flowering but decreased at maturity. Among organic acids, malic acid showed the highest concentration followed by tartaric, succinic, citric and lactic acids. With advancing plant growth, exudation of organic acids substituted exudation of sugars. Root and shoot biomass were positively correlated with carbon exudation suggesting that it is driven by plant biomass. As root exudates provide substrates for methanogenesis in rice fields, large variations in root exudation by cultivars and at different growth stages could greatly influence CH4 emissions. Therefore, the use of high‐yielding cultivars with lowest root excretions, for example IR65598 and IR65600, would mediate low exudate‐induced CH4 production. The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.  相似文献   

20.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号