首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokine-receptor interactions regulate leukocyte trafficking during inflammation. CC chemokines exist in equilibrium between monomeric and dimeric forms. Although the monomers can activate chemokine receptors, dimerization is required for leukocyte recruitment in vivo, and it remains controversial whether dimeric CC chemokines can bind and activate their receptors. We have developed an obligate dimeric mutant of the chemokine monocyte chemoattractant protein-1 (MCP-1) by substituting Thr(10) at the dimer interface with Cys. Biophysical analysis showed that MCP-1(T10C) forms a covalent dimer with similar structure to the wild type MCP-1 dimer. Initial cell-based assays indicated that MCP-1(T10C) could activate chemokine receptor CCR2 with potency reduced 1 to 2 orders of magnitude relative to wild type MCP-1. However, analysis of size exclusion chromatography fractions demonstrated that the observed activity was due to a small proportion of MCP-1(T10C) being monomeric and highly potent, whereas the majority dimeric form could neither bind nor activate CCR2 at concentrations up to 1 μM. These observations help to reconcile previous conflicting results and indicate that dimeric CC chemokines do not bind to their receptors with affinities approaching those of the corresponding monomeric chemokines.  相似文献   

2.
The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.  相似文献   

3.
单核细胞趋化蛋白-1(monocyte chemoattractant protein-1;MCP-1)属于炎症趋化因子CC亚族成员,它能趋化T淋巴细胞、单核细胞,诱导内皮细胞、单核细胞释放黏附因子,使单核/巨噬细胞向病变处聚集。这些免疫及炎症过程有可能导致2型糖尿病大血管病变的发生、发展。本文就单核细胞趋化蛋白-1促使动脉粥样硬化的机制、及其干预治疗,单核细胞趋化蛋白-1表达上调的影响因素,深入了解单核细胞趋化蛋白-1与2型糖尿病大血管病变的关系。  相似文献   

4.
Xu CY  Li S  Shao K  Zhang RL  Hao W 《中国应用生理学杂志》2011,27(3):274-5, 283, 379
目的:观察大鼠急性酒精中毒后脑组织趋化因子单核细胞趋化蛋白1(MCP-1)及其受体CCR2mRNA水平的表达变化.方法:制备急性酒精中毒模型,用SYBR Green I荧光实时定量PCR技术动态定量监测脑组织中MCP-1与CCR2 mRNA在急性酒精中毒后不同时间点表达的变化.结果:息性酒精中毒后6h脑组织MCP-1 ...  相似文献   

5.
The chemotaxis and adhesion of monocytes to the injured endothelium in the early atherosclerosis is important. Cilostazol, a specific phosphodiesterase type III inhibitor, is known to exhibit anti-atherosclerotic effects mediated by different mechanisms. This study aimed to investigate the modulating effect of cilostazol on the MCP-1-induced chemotaxis and adhesion of monocytes. The gene expression of CCR2, the major receptor of MCP-1 in THP-1 monocytes, was also analyzed. The chemotaxis of monocytes toward MCP-1 was investigated using the transwell filter assay. Cilostazol dose-dependently inhibited the MCP-1-induced chemotaxis of monocytes which was shown to be cAMP-dependent. Using western blot analysis and flow cytometry method, we demonstrated the decrease of CCR2 protein at the cell membrane of monocytes by cilostazol treatment. Results from RT/real-time PCR confirmed the decrease of CCR2 mRNA expression by cilostazol which was also mediated by cAMP. Similar inhibition was also noted in human peripheral monocytes. The post-CCR2 signaling pathways including p44/42 and p38 MAPK were examined by western blot analysis. Result confirmed the inhibitory effect of cilostazol on the phosphorylation of p44/42 and p38 MAPK after MCP-1 stimulation. The activation of monocytes after MCP-1 treatment exhibited enhanced adhesion to vascular endothelial cells which was dose-dependently suppressed by cilostazol. Together, cilostazol was demonstrated, for the first time, to inhibit the CCR2 gene expression and MCP-1-induced chemotaxis and adhesion of monocytes which might therefore reduce the infiltration of monocytes during the early atherosclerosis. The present study provides an additional molecular mechanism underlying the anti-atherosclerotic effects of cilostazol.  相似文献   

6.
Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2−/−). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2−/− mice, in the inflamed airway of CRAMP−/− mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung.  相似文献   

7.
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.  相似文献   

8.
Increased monocyte recruitment into subendothelial space in atherosclerotic lesions is one of the hallmarks of diabetic angiopathy. The aim of this study was to determine the state of peripheral blood monocytes in diabetes associated with atherosclerosis. Diabetic patients treated with/without an oral hypoglycemic agent and/or insulin for at least 1 year were recruited (n=106). We also included 24 non-diabetic control subjects. We measured serum levels of monocyte chemoattractant protein (MCP)-1, fasting plasma glucose (FPG), HbA1c, total cholesterol, triglyceride, body mass index (BMI), high sensitivity CRP (hs-CRP) and evaluated CCR2, CD36, CD68 expression on the surface of monocytes. Serum MCP-1 levels were significantly (p<0.05) higher in diabetic patients than in normal subjects. In diabetic patients, serum MCP-1 levels correlated significantly with FPG, HbA1c, triglyceride, BMI, and hs-CRP. The expression levels of CCR2, CD36, and CD68 on monocytes were significantly increased in diabetic patients and were more upregulated by MCP-1 stimulation. Our data suggest that elevated serum MCP-1 levels and increased monocyte CCR2, CD36, CD68 expression correlate with poor blood glucose control and potentially contribute to increased recruitment of monocytes to the vessel wall in diabetes mellitus.  相似文献   

9.
Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists.  相似文献   

10.
The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184–196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r11–183 (Ube2r1C). Replacement of Gln-105–Ser-106–Gly-107 in the acidic loop of Ube2r1C (Ube2r1CYGY) by the corresponding residues from Ube2g1 (Tyr-102–Gly-103–Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1CC93S-[15N]UBK48R oxyester displayed two-state conformational exchange, whereas the Ube2r1CC93S/YGY-[15N]UBK48R oxyester showed predominantly one state. Together with NMR studies that compared UBK48R oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity.  相似文献   

11.
The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198–206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions.  相似文献   

12.
Activation of the aryl hydrocarbon receptor (AhR) by TCDD may lead to the induction of proinflammatory cytokines in various cell types and organs such as liver leading to active chronic inflammation. Here we studied the expression of the chemokines keratinocyte chemoattractant (KC) and monocyte chemoattractant protein 1 (MCP-1) in different organs of mice after exposure to TCDD. TCDD exposure led to an early and clear induction of KC in liver and spleen on day 1 which was sustained over a period of 10 days. The level of MCP-1 mRNA was induced by TCDD on day 1 in spleen, lung, kidney, and liver, which was further increased at day 7. Increase of KC and MCP-1 at day 7 in liver, thymus, kidney, adipose, and heart was associated with elevated levels of the macrophage marker F4/80, indicating the infiltration of macrophages in these organs. Induction of KC requires a functional AhR since mice with a mutation in the AhR nuclear localization domain (AhR(nls)) were found to be resistant to TCDD-induced expression of KC. These results are the first showing the induction of the chemokines KC and MCP-1 in multiple organs of mice associated with an increase of the macrophage marker F4/80 indicating the involvement in TCDD's inflammatory response like infiltration of macrophages.  相似文献   

13.
NBR1 (neighbor of BRCA1 gene 1) is a protein commonly found in ubiquitin-positive inclusions in neurodegenerative diseases. Due to its high architectural similarity to the well studied autophagy receptor protein p62/SQSTM1, NBR1 has been thought to analogously bind to ubiquitin-marked autophagic substrates via its C-terminal ubiquitin-associated (UBA) domain and deliver them to autophagosomes for degradation. Unexpectedly, we find that NBR1 differs from p62 in its UBA structure and accordingly in its interaction with ubiquitin. Structural differences are observed on helix α-3, which is tilted farther from helix α-2 and extended by approximately one turn in NBR1. This results not only in inhibition of a p62-type self-dimerization of NBR1 UBA but also in a significantly higher affinity for monoubiquitin as compared with p62 UBA. Importantly, the NBR1 UBA-ubiquitin complex structure shows that the negative charge of the side chain in front of the conserved MGF motif in the UBA plays an integral role in the recognition of ubiquitin. In addition, NMR and isothermal titration calorimetry experiments show that NBR1 UBA binds to each monomeric unit of polyubiquitin with similar affinity and by the same surface used for binding to monoubiquitin. This indicates that NBR1 lacks polyubiquitin linkage-type specificity, in good agreement with the nonspecific linkages observed in intracellular ubiquitin-positive inclusions. Consequently, our results demonstrate that the structural differences between NBR1 UBA and p62 UBA result in a much higher affinity of NBR1 for ubiquitin, which in turn suggests that NBR1 may form intracellular inclusions with ubiquitylated autophagic substrates more efficiently than p62.  相似文献   

14.
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.  相似文献   

15.
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.  相似文献   

16.
Toll-like receptor 4 gene (TLR4) that recognizes the Gram negative bacterial ligand LPS was sequenced in the Bos indicus Sahiwal cattle breed. Ninety four single nucleotide polymorphisms (SNPs) were detected within 10.8 kb gene region. Seventeen of the SNPs were in the coding regions and the one at position 9589(A > G) in exon3 resulted in an amino acid change from Valine to Isoleucine. These SNPs led to generation of 27 TLR4 gene haplotypes. All the Sahiwal animals studied presently showed the occurrence of the genotype CC at gene position 9662, which codes for the amino acid threonine at position 674 of the TLR4 protein, and which had been reported to be associated with lower somatic cell score and, therefore, a lower susceptibility to mastitis, in Taurus cattle. This nucleotide configuration of the Toll-like receptor 4 gene of the Bos indicus Sahiwal cattle breed could possibly indicate toward a lower susceptibility to mastitis in the Sahiwal animals. Monocyte chemo-attractant protein-1 (CCL2) gene encoding for small inducible cytokine A2 that belongs to the CC chemokine family was also sequence characterized in these Sahiwal animals. The CCL2 gene was observed to have 12 polymorphic sites in 3.3 kb region of which one SNP at position 2500 (A > G) in exon 3 resulted in amino acid change from Valine to Isoleucine at position 46 of the mature CCL2 peptide. Seventeen haplotypes of the CCL2 gene were predicted corresponding to 12 genotypes detected.  相似文献   

17.
Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.  相似文献   

18.
Tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 have growth-stimulating activity for a wide range of cell types. Ras, which comprises a family of three members, i.e, Ha-Ras, Ki-Ras, and H-Ras, is known to participate in growth control in all its facets, including cell proliferation, transformation, differentiation, and apoptosis. In this study, we tested the hypothesis that Ras might be involved in the cell growth-promoting activity of TIMPs. Using MG-63 human osteosarcoma cells, we demonstrated that both TIMP-1 and TIMP-2 caused an increase in the Ras-GTP level in a dose-dependent manner. Our previous results indicated that TIMP-1 activity is mediated through the tyrosine kinase (TYK)/mitogen-activated protein kinase (MAPK) pathway. Here, we demonstrated that Ras activation by TIMP-1 was inhibited by a specific TYK inhibitor, herbimycin A, suggesting that the TYK/MAPK signaling pathway was involved in Ras activation by TIMP-1. However, the activation of Ras by TIMP-2 was inhibited by an inhibitor specific for cyclic AMP-dependent protein kinase (PKA), H89, suggesting the involvement of the PKA-mediated pathway. Furthermore, TIMP-2 promoted the formation of a complex between Ras-GTP and phosphoinositide 3-kinase.  相似文献   

19.
Phosphoinositides (PIs) are crucial lipid components of membranes and are involved in a number of cellular processes through interactions with their effector proteins. Recently, we have established a lipid-protein nanoscale bilayer (nanodisc) containing PIs, hereafter referred to as PI-nanodisc and demonstrated that it could be used for both qualitative and quantitative evaluations of protein-membrane interactions. Here, we report further NMR analyses for obtaining structural insights at the residue-specific level between PI-binding effector protein and PI-nanodisc, using the FYVE domain of early endosome antigen 1 (EEA1), denoted as EEA1 FYVE, and PI(3)P-nanodisc as a model system. We performed a combination of the NMR analyses including chemical shift perturbation, transferred cross-saturation, and paramagnetic relaxation enhancement experiments. These enabled an identification of the interaction surface, structural change, and relative orientation of EEA1 FYVE to the PI(3)P-incorporated lipid bilayer, substantiating that NMR analyses of protein-membrane interactions using nanodisc makes it possible to show the residue-specific interactions in the lipid bilayer environment.  相似文献   

20.
摘要 目的:探究急性缺血性脑卒中(AIS)患者血清视黄醇结合蛋白4(RBP4)、脂蛋白磷脂酶A2(Lp-PLA2)及单核细胞趋化蛋白-1(MCP-1)水平表达及其与患者病情及预后的关系。方法:选取2020年6月~2021年12月我院收治的130例初发AIS患者作为研究对象,根据美国国立卫生研究院卒中量表(NIHSS)评分分为轻度组、中度组、重度组,另取同期在我院体检的志愿者45例作为对照组。采用酶联免疫吸附测定(ELLSA)法检测并对比各组血清RBP4、Lp-PLA2、MCP-1水平差异。改良Rankin量表(MRS)评估AIS患者入院14 d预后,比较不同预后患者临床资料差异。采用Pearson相关系数分析血清RBP4、Lp-PLA2、MCP-1水平与NIHSS、MRS评分的相关性。受试者工作特征(ROC)曲线分析血清RBP4、Lp-PLA2、MCP-1对AIS患者预后的预测价值。结果:AIS患者的血清RBP4、Lp-PLA2、MCP-1水平均明显高于对照组,且随着病情程度的加重,血清RBP4、Lp-PLA2、MCP-1水平逐渐升高(P<0.05)。预后不良组年龄、血清RBP4、Lp-PLA2、MCP-1水平以及NIHSS评分均明显高于预后良好组(P<0.05)。AIS患者的血清RBP4、Lp-PLA2、MCP-1水平与NIHSS、MRS评分之间均呈正相关(P<0.05)。血清RBP4、Lp-PLA2、MCP-1三项联合检测预测AIS患者预后的ROC曲线下面积为0.957,明显高于各指标单独检测的0.775、0.799、0.781。结论:AIS患者血清RBP4、Lp-PLA2、MCP-1水平显著升高,升高程度与患者病情及预后密切相关,三项指标联合检测对AIS患者预后具有良好的预测价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号