首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.  相似文献   

2.
Portable meters and simplified gas Chromatographic (GC) techniques were investigated for monitoring volatile hydrocarbon (HC), CO2, and O2, concentrations in groundwater, exhaust gases, and soil vapor during in situ remediation using soil vapor extraction (SVE) and air sparging (AS). Results of groundwater samples analyzed in‐house using a headspace technique compared well to split samples analyzed by a certified analytical laboratory (r2 = 0.94). SVE exhaust gas HC and CO2 concentrations measured using a GT201 portable HC/O2 meter and a RA‐411A meter (GasTech), respectively, were highly correlated with in‐house laboratory GC analyses (r2 = 0.91). O2 concentrations fell in a small range and meter analyses were not well correlated with laboratory analyses. Results of soil gas monitoring were not as well correlated as those for exhaust gases for HC, CO2, or O2, perhaps due to environmental conditions such as changes in relative humidity or the wider range of soil gas values. Overall, the meters were good indicators of vapor contamination, they greatly simplified estimates of total HC mass removal, and they allowed estimates of the biological contribution to contaminant removal during the remediation process.  相似文献   

3.
Ren Q  Zhao C  Duan L  Chen X 《Bioresource technology》2011,102(14):7211-7217
NO formation during combustion of four typical kinds of straw (wheat straw, rice straw, cotton stalk and corn stalk) which belong to soft straw and hard straw was studied in a tubular quartz fixed bed reactor under conditions relevant to grate boiler combustion. Regarding the real situation in biomass fired power plants in China, NO formation from blended straw combustion was also investigated. Nitrogen transfer during blended straw pyrolysis was performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results show that NO conversion for the four straws during combustion is distinctive. Over 70% fuel-N converts into NO for cotton stalk, while only 37% for wheat straw under the same condition. When wheat straw and cotton stalk were mixed, N-NO conversion increases. The limestone addition promotes NO emission during cotton stalk combustion. The presence of SO2 in atmosphere suppresses NO formation from straw combustion.  相似文献   

4.
The cleaning of the exhaust gases of a bioreactor containing volatile hydrocarbons in a bioreactor system with a closed gas circuit is described. The bioreactor system consisted of three different reactor types: a stirred tank which was filled with hydrocarbon-containing waste water to simulate the exhaust gases of a remediation process; a trickle-bed reactor for aerobic treatment of the exhaust gas from the stirred tank; and a photoreactor containing an algae culture which assimilated CO2 from the trickle-bed reactor and also produced O2. With this bioreactor system, it was possible to efficiently remove volatile organic compounds (VOC) from the waste gases. Depending on the type of waste water investigated, elimination rates of 41% to 93% of BTEX (benzene, ethylbenzene, toluene, xylene) and 29% to 53% of VCH (volatile chlorinated hydrocarbons) were obtained. Due to the photosynthesis of the algae in the system's photoreactor, oxygen concentrations between 12% and 18% [v/v], equivalent to about 57% to 83% DOT, were obtained. This concentration permitted the aerobic degradation to be carried out without having to add fresh air. The trickle-bed reactor and the photoreactor worked continuously, whereas the waste water in the stirred bioreactor was replaced in different batches. The accumulation of toxic compounds in the nutrient solutions of the trickle-bed (EC-50 > 30 g/l) and of the photoreactor (EC-50 > 35 g/l) was low. Carbon dioxide concentrations in the gas flow were higher than in fresh air (1% to 3% [vol/vol]), but no long-term accumulation of CO2 occurred. This means that the algae in the photoreactor were active enough to assimilate the CO2 which had been produced. They were also able to produce sufficient oxygen for aerobic hydrocarbon degradation. The system described is a first step towards treating waste gases which results from the bioremediation of hydrocarbon-contaminated media in a closed gas circuit without any emission (e.g. VOC, CO2, germs).  相似文献   

5.
Yi Wang  Emad Tajkhorshid 《Proteins》2010,78(3):661-670
Involvement of aquaporins in gas conduction across the membrane and the physiological significance of this process have attracted marked attention from both experimental and theoretical studies. Previous work demonstrated that AQP1 is permeable to both CO2 and O2. Here we employ various simulation techniques to examine the permeability of the brain aquaporin AQP4 to NO and O2 and to describe energetics and pathways associated with these phenomena. The energy barrier to NO and O2 permeation through AQP4 central pore is found to be only ~3 kcal mol?1. The results suggest that the central pore of AQP4, similar to that of AQP1, can indeed conduct gas molecules. Interestingly, despite a longer and narrower central pore, AQP4 appears to provide an energetically more favorable permeation pathway for gas molecules than AQP1, mainly due to the different orientation of its charged residues near the pore entrance. Although the low barrier against gas permeation through AQP4 indicates that it can participate in gas conduction across the cellular membrane, physiological relevance of the phenomenon remains to be established experimentally, particularly since pure lipid bilayers appear to present a more favorable pathway for gas conduction across the membrane. With an energy well of ?1.8 kcal mol?1, the central pore of AQP4 may also act as a reservoir for NO molecules to accumulate in the membrane. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Plasma Physics Reports - Inactivation of spore microorganisms on a dielectric surface by a dielectric barrier discharge with plane electrodes was studied experimentally. It is shown that, at an...  相似文献   

7.
A multichannel quartz crystal microbalance array (MQCM) with three pairs of gold electrodes was fabricated for detection of two biomarkers: acetone and nitric oxide (NO). The gold electrodes were deposited symmetrically on an AT-cut 10 MHz circular quartz plate using photolithography, sputtering, and lift-off technologies. The effect of gold layer thickness on MQCM performance was investigated and the optimized thickness was 101 nm. The simulation values of the electric parameters C0, Cq, Lq, and Rq in the Butterworth–Van Dike equivalent circuit for the MQCM device were 97 pF, 1.3 pF, 1.05 mH, and 9.8 Ω, respectively. Simulation values were in the theoretical range, which indicated that the fabricated MQCM device had good resonance performance. Two types of nanocomposites, titanium dioxide–multiwalled carbon nanotubes and cobalt (II)phthalocyanine–silica, were synthesized as sensing materials. The sensing mechanism is based on coordination adsorption of target molecules onto the sensing material, resulting in a resonant frequency shift of modified QCM sensor. A linear range from 4.33 to 129.75 ppmv for acetone was obtained and one from 5.75 to 103.45 ppbv for NO.  相似文献   

8.
A surface discharge in a system where metal electrodes in the form of a series of parallel strips are positioned on the dielectric surface is studied. Analytical formulas for calculating the spatial distribution of the potential and the electric field in a discharge cell are derived. It is shown that the geometry of the metal electrodes should be taken into account (along with physical and chemical characteristics of the dielectric, the voltage applied to the electrodes, and other parameters of the system) for generation of the electric field with optimal configuration in the discharge cell. The obtained results are also applicable for analysis of discharge cells with a coplanar barrier discharge where metal electrodes are positioned in the dielectric at small depths. The results are of interest since a barrier discharge is one of the efficient methods for generating non-equilibrium plasma at high pressures for a variety of technological applications.  相似文献   

9.
A number of experiments was conducted in order to establish if N2O in the exhaust gas from an aerobic consortium of nitrifiers could be used as an indicator for monitoring the nitrification process. Laboratory-scale experiments with an activated sludge system showed a strong correlation between ammonia shock loads and both the concentration of N2O and the rate of increase of N2O in the exhaust gas for shock loads less than 1.60 mg ammonical nitrogen (NH3-N) per g total suspended solids (TSS). For greater ammonia shock loads, correlation was found between build-up of nitrite in the aeration tank and the concentration of N2O in the exhaust gas from the tank. When subjecting the system to aeration failure, a similar pattern was seen, with a correlation between nitrite build-up in the aeration tank and increases in the concentration of N2O in the exhaust gas. The results from this work suggest that the changes in N2O concentration in the exhaust gas from a nitrifying process may be a useful parameter for monitoring such processes. Received 15 October 2001/ Accepted in revised form 05 June 2002  相似文献   

10.
In the paper, H2 rich gas produced from fowl manure (hen compost-HC) by low temperature catalytic gasification (LTCG) technology is addressed. The pyrolysis behaviors of the samples before and after weak acid pretreatment were investigated using thermal gravimetric analysis. Furthermore, the catalytic influence of HC char and HC ash on the decomposition of the nascent volatiles was determined. A catalytic role of the minerals contained in HC on its pyrolysis behavior was confirmed due to the high content of Ca. LTCG process promotes the complete decomposition of the manure volatiles and significantly increases H2 yield and the total gas yield. An obvious catalytic effect of HC char and HC ash on the decomposition of the nascent volatiles is attributed to CaO contained in them.  相似文献   

11.
Microbial removal of nitrogen monoxide (NO) under aerobic conditions   总被引:13,自引:0,他引:13  
Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide (NO2), at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was supplied for 25 days through a laboratory-scale biofilter packed with soil as a packing material. The removal efficiency of NO2 by soil was almost 100%, and the removal efficiency of NO was 60% on average and 86% at maximum. By using -irradiated soil as a packing material, NO2 was completely removed mainly by adsorption onto or absorption into the packing material. However, the removal efficiency of NO in the sterilized soil was only 20%, suggesting that NO in soil was removed microbiologically under aerobic conditions.  相似文献   

12.
Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine has been evaluated using immobilized pyruvate decarboxylase (PDC) from Candida utilis. PDC immobilized in spherical polyacrylamide beads was found to have a longer half-life compared with free enzyme. In a batch process, the immobilized PDC generally produced lower L-PAC than free enzyme at the same concentrations of substrates due to increased by-products acetaldehyde and acetoin and reduced benzaldehyde uptake. With immobilized PDC, L-PAC formation occurred at higher benzaldehyde concentrations (up to 300 mM) with the highest L-PAC concentration being 181 mM (27.1 g/L). For a continuous process, when 50 mM benzaldehyde and 100 mM sodium pyruvate were fed into a packed-bed reactor at 4 degrees C and pH 6.5, a productivity of 3.7 mM/h (0.56 g/L . h) L-PAC was obtained at an average concentration of 30 mM (4.5 g/L). The half-life of immobilized PDC reactor was 32 days. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.  相似文献   

14.
Established dynamic regimes of similar (with a scale factor of 10) barrier discharges in the 0.95 Ne/0.05 Xe mixture are simulated in a one-dimensional drift-diffusion model. The similarity is examined of barrier discharges excited in gaps of lengths 0.4 and 4 mm at gas pressures of 350 and 35 Torr and dielectric layer thicknesses of 0.2 and 2 mm, the frequencies of the 400-V ac voltage applied to the discharge electrodes being 100 and 10 kHz, respectively.  相似文献   

15.
Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.  相似文献   

16.
Vitamin C, or ascorbic acid, decreases paracellular endothelial permeability in a process that requires rearrangement of the actin cytoskeleton. To define the proximal mechanism of this effect, we tested whether it might involve enhanced generation and/or sparing of nitric oxide (NO) by the vitamin. EA.hy926 endothelial cells cultured on semi-porous filter supports showed decreased endothelial barrier permeability to radiolabeled inulin in response to exogenous NO provided by the NO donor spermine NONOATE, as well as to activation of the downstream NO pathway by 8-bromo-cyclic GMP, a cell-penetrant cyclic GMP analog. Inhibition of endothelial nitric oxide synthase (eNOS) with Nω-nitro-l-arginine methyl ester increased endothelial permeability, indicating a role constitutive NO generation by eNOS in maintaining the permeability barrier. Inhibition of guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one also increased endothelial permeability and blocked barrier tightening by spermine NONOATE. Loading cells with what are likely physiologic concentrations of ascorbate decreased endothelial permeability. This effect was blocked by inhibition of either eNOS or guanylate cyclase, suggesting that it involved generation of NO by eNOS and subsequent NO-dependent activation of guanylate cyclase. These results show that endothelial permeability barrier function depends on constitutive generation of NO and that ascorbate-dependent tightening of this barrier involves maintaining NO through the eNOS/guanylate cyclase pathway.  相似文献   

17.
T Katsu  S Yoshimura  Y Fujita 《FEBS letters》1984,166(1):175-178
The action of polycations (such as polylysine and compound 48/80) on Escherichia coli was studied with use of Ca2+, K+ and TPP+ ion-selective electrodes. Rapid efflux of Ca2+ was observed when a polycation was added in cell suspension. The polycation treatment promoted a drug-inducing K+ release from the cytoplasmic membrane. TPP+ uptake was also increased by addition of a polycation. Without the polycation treatment, the uptake of TPP+ was largely suppressed due to a permeability barrier of the outer membrane. The results show that a polycation disrupted the permeability barrier of the outer membrane.  相似文献   

18.
Results are presented from experimental studies of the electrophysical and spatiotemporal characteristics of a dielectric barrier discharge operating in atmospheric-pressure air in a discharge cell with a dielectric barrier in the form of a rotating disc. One of the electrodes of the discharge cell was stationary and placed at a certain distance from the dielectric surface, and the following two versions of the second electrode were used: (i) a metal disc electrode was attached to the surface of the rotating dielectric disc, while on the opposite surface of the disc, there was a rectangular strip electrode that was at the same potential as a metal disc electrode and had a sliding contact with the dielectric; (ii) only the strip electrode with the sliding contact was connected to the high-voltage source, while the metal disc electrode was disconnected. Due to barrier rotation, the discharge operated in a pulse mode, although it was supplied from a dc voltage source. The current-voltage characteristic of such a dielectric barrier discharge was measured and analyzed. The number of microdischarge channels arising at the stationary electrode, the geometrical parameters of the microdischarge channels, and the discharge current were studied as functions of the supplied voltage, the distance between the stationary electrode and the dielectric surface, and the rotation velocity of the barrier disc.  相似文献   

19.
We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space–time yields were 124.28 kg m− 3 h− 1 and 203.80 kg m− 3 h− 1 when gas hourly space velocities were 650 h− 1 and 1200 h− 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98–1.17 to 2.12–2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.  相似文献   

20.
Supercritical water gasification (SCWG) of glucose solution (50-200 g/L), a simulated aqueous organic waste (composed of glucose, acetic acid and guaiacol) and a real aqueous organic waste stream generated from a sludge hydrothermal liquefaction process was performed in a bench-scale continuous down-flow tubular reactor with novel 0.1RuNi/γ-Al2O3 or 0.1RuNi/activated carbon (AC) catalyst (10 wt.% Ni with a Ru-to-Ni molar ratio of 0.1). 0.1RuNi/γ-Al2O3 was very effective in catalyzing SCWG of glucose solution and the simulated aqueous organic waste, attaining an H2 yield of 53.9 mol/kg dried feedstock at 750 °C, 24 MPa and a WHSV of 6 h−1. However, the γ-Al2O3-supported catalyst was not resistant to the attack of alkali and nitrogen compounds in the real waste during the SCWG of the real aqueous organic waste, whereas the AC-based catalyst exhibited higher stability. This research provides a promising approach to the treatment and valorization of aqueous organic waste via SCWG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号