首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zheng D  Chen G  Guo B  Cheng G  Tang H 《Cell research》2008,18(11):1105-1113
Infections by coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus (SCoV) and mouse hepatitis virus A59 (MHV-A59) result in very little type I interferon (IFN) production by host cells, which is potentially responsible for the rapid viral growth and severe immunopathology associated with SARS. However, the molecular mechanisms for the low IFN production in cells infected with coronaviruses remain unclear. Here, we provide evidence that Papain-like protease domain 2 (PLP2), a catalytic domain of the nonstructural protein 3 (nsp3) of MHV-A59, can bind to IRF3, cause its deubiquitination and prevent its nuclear translocation. As a consequence, co-expression of PLP2 strongly inhibits CARDIF-, TBK1- and IRF3-mediated IFNbeta reporter activities. In addition, we show that wild-type PLP2 but not the mutant PLP2 lacking the deubiquitinase (DUB) activity can reduce IFN induction and promote viral growth in cells infected with VSV. Thus, our study uncovered a viral DUB which coronaviruses may use to escape from the host innate antiviral responses.  相似文献   

3.
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.  相似文献   

4.
5.
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.  相似文献   

6.
7.
The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a−/− mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a−/− mice. Although Ceacam1a−/− mice were completely resistant to i.c. inoculation with 106 PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a−/− and wild-type mice. For RJHM, the 50% lethal dose (LD50) is <101.3 in wild-type mice and 103.1 in Ceacam1a−/− mice. For SJHM/RA59, the LD50 is <101.3 in wild-type mice and 103.6 in Ceacam1a−/− mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a−/− mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.  相似文献   

8.
E C Bos  W Luytjes    W J Spaan 《Journal of virology》1997,71(12):9427-9433
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.  相似文献   

9.
Previous studies of a group of mutants of the murine coronavirus mouse hepatitis virus (MHV)-A59, isolated from persistently infected glial cells, have shown a strong correlation between a Q159L amino acid substitution in the S1 subunit of the spike gene and a loss in the ability to induce hepatitis and demyelination. To determine if Q159L alone is sufficient to cause these altered pathogenic properties, targeted RNA recombination was used to introduce a Q159L amino acid substitution into the spike gene of MHV-A59. Recombination was carried out between the genome of a temperature-sensitive mutant of MHV-A59 (Alb4) and RNA transcribed from a plasmid (pFV1) containing the spike gene as well as downstream regions, through the 3′ end, of the MHV-A59 genome. We have selected and characterized two recombinant viruses containing Q159L. These recombinant viruses (159R36 and 159R40) replicate in the brains of C57BL/6 mice and induce encephalitis to a similar extent as wild-type MHV-A59. However, they exhibit a markedly reduced ability to replicate in the liver or produce hepatitis compared to wild-type MHV-A59. These viruses also exhibit reduced virulence and reduced demyelination. A recombinant virus containing the wild-type MHV-A59 spike gene, wtR10, behaved essentially like wild-type MHV-A59. This is the first report of the isolation of recombinant viruses containing a site-directed mutation, encoding an amino acid substitution, within the spike gene of any coronavirus. This technology will allow us to begin to map the molecular determinants of pathogenesis within the spike glycoprotein.  相似文献   

10.
Although most inbred mouse strains are highly susceptible to mouse hepatitis virus (MHV) infection, the inbred SJL line of mice is highly resistant to its infection. The principal receptor for MHV is murine CEACAM1 (mCEACAM1). Susceptible strains of mice are homozygous for the 1a allele of mCeacam1, while SJL mice are homozygous for the 1b allele. mCEACAM1a (1a) has a 10- to 100-fold-higher receptor activity than does mCEACAM1b (1b). To explore the hypothesis that MHV susceptibility is due to the different MHV receptor activities of 1a and 1b, we established a chimeric C57BL/6 mouse (cB61ba) in which a part of the N-terminal immunoglobulin (Ig)-like domain of the mCeacam1a (1a) gene, which is responsible for MHV receptor function, is replaced by the corresponding region of mCeacam1b (1b). We compared the MHV susceptibility of these chimeric mice to that of SJL and B6 mice. B6 mice that are homozygous for 1a are highly susceptible to MHV-A59 infection, with a 50% lethal dose (LD50) of 102.5 PFU, while chimeric cB61ba mice and SJL mice homozygous for 1ba and 1b, respectively, survived following inoculation with 105 PFU. Unexpectedly, cB61ba mice were more resistant to MHV-A59 infection than SJL mice as measured by virus replication in target organs, including liver and brain. No infectious virus or viral RNA was detected in the organs of cB61ba mice, while viral RNA and infectious virus were detected in target organs of SJL mice. Furthermore, SJL mice produced antiviral antibodies after MHV-A59 inoculation with 105 PFU, but cB61ba mice did not. Thus, cB61ba mice are apparently completely resistant to MHV-A59 infection, while SJL mice permit low levels of MHV-A59 virus replication during self-limited, asymptomatic infection. When expressed on cultured BHK cells, the mCEACAM1b and mCEACAM1ba proteins had similar levels of MHV-A59 receptor activity. These results strongly support the hypothesis that although alleles of mCEACAM1 are the principal determinants of mouse susceptibility to MHV-A59, other as-yet-unidentified murine genes may also play a role in susceptibility to MHV.Differences in susceptibility to a number of viral infections have been documented among inbred mouse strains (20). These differences have been studied as models for the various degrees of susceptibility of individual humans to some viral infections. Numerous host factors have been found to be involved in such differences (2, 15). For example, allelic variations in the virus receptor and coreceptor for HIV-1 are important host factors influencing susceptibility to HIV-1 infection (36).A virus receptor is a molecule with which the virus interacts at an initial step of infection. Therefore, receptors are crucial host determinants of virus susceptibility (15, 16). A variety of receptor proteins has been identified for many different viruses, including the murine coronavirus mouse hepatitis virus (MHV) (12, 50). The principal receptor for MHV is murine carcinoembryonic antigen-related cell adhesion molecule 1 (mCEACAM1; previously called Bgp or MHVR [3]), which is in the immunoglobulin (Ig) superfamily (12, 50). Four isoforms of mCEACAM1a (1a) are expressed on the plasma membranes of a variety of murine cells and tissues (14). The two mCEACAM1 isoforms with a molecular mass of 100 to 120 kDa are composed of four Ig-like ectodomains, a transmembrane (TM) domain, and either a long or a short cytoplasmic tail (Cy) (3, 22). Two other isoforms consist of two Ig-like domains, with either long or short Cy (3, 22). The N-terminal (N) domain is responsible for virus binding (10, 24), the induction of conformational changes in the viral spike protein (S), and membrane fusion during virus entry and syncytium formation (13, 24). The replacement of the N-terminal domain of mCEACAM1a with that of the murine homolog of the poliovirus receptor (PVR) yields a functional receptor for MHV (10), and Ceacam1a-knockout mice are completely resistant to infection with the hepatotropic A59 strain of MHV (17, 25).Wild mice have two alleles of the mCeacam1 gene, called mCeacam1a and mCeacam1b. Inbred mouse strains that are homozygous for mCeacam1a, including BALB/c, C57BL/6 (B6), C3H, and A/J mice, etc., are highly susceptible to infection with strains of MHV. In contrast, the SJL line of inbred mice, which is resistant to death from MHV infection, is homozygous for the mCeacam1b allele (5, 11, 50). The most extensive differences in amino acid sequence between mCEACAM1a and mCEACAM1b are found in the N-terminal domain, where the virus-binding region is located (21, 22, 32). It was initially reported by Boyle et al. that mCEACAM1a proteins had MHV-A59 virus-binding activity in a virus overlay protein blot, while mCEACAM1b did not (5). Those authors speculated that the different viral affinities of these mCEACAM1 proteins may account for the various MHV-A59 susceptibilities of BALB/c mice compared to those of SJL mice (49). However, Yokomori and Lai (53) and Dveksler et al. (11) previously showed that when recombinant CEACAM1a and CEACAM1b proteins are expressed at high levels on cultured cells, both proteins have MHV-A59 receptor activity. Yokomori and Lai suggested that the difference in MHV susceptibility between BALB/c and SJL mice does not depend solely upon the interaction of the virus with mCEACAM1 proteins (52, 53). Dveksler et al. suggested that small differences in MHV-A59 receptor activity between mCEACAM1a and mCEACAM1b could result in very large biological differences during multiple cycles of infection in in vivo infection (11). We then quantitatively showed that recombinant mCEACAM1a expressed in BHK cells has 10- to 30-times-higher MHV-binding activity than mCEACAM1b (31). Similar results were observed in other laboratories (7, 32). Because the mCeacam1 gene is located on chromosome 7 (34) and the gene controlling MHV-A59 susceptibility and the resistance of BALB/c mice versus SJL mice is also located on chromosome 7 close to the mCeacam1 gene (40), we speculated that the mCeacam1 gene is identical to the gene that determines the susceptibility and/or resistance of mice to MHV-A59 and MHV-JHM infection.To examine the above-described hypothesis, we used progeny mice produced by crossing BALB/c and SJL mice. F2 mice and F1 mice backcrossed to SJL mice were examined for the mCeacam1 genotype and for MHV-JHM susceptibility (30). Mice homozygous for mCeacam1a (1a/1a) and heterozygous mice (1a/1b) were susceptible to lethal MHV-JHM infection, while mice homozygous for mCeacam1b (1b/1b) were not killed by inoculation with MHV-JHM. These data are consistent with the hypothesis that the susceptibility of mice to MHV is determined by the mCeacam1a allele (30). However, this classical genetic analysis could not prove that mCeacam1 alone determines the susceptibility or resistance of mice to MHV-JHM infection, because this methodology cannot rule out the possibility that a different unknown host gene located close to mCeacam1 on chromosome 7 could also affect MHV-JHM susceptibility. Therefore, we used gene replacement in B6 embryonic stem (ES) cells to create a mouse strain in which the exon encoding the N-terminal part of the N-terminal Ig domain of mCeacam1a was replaced with the corresponding region of mCeacam1b from SLJ mice. We bred the chimeric mCeacam1 gene on the B6 background (called B6 chimeric mCeacam1ba, or cB61ba). We compared these mice, wild-type B6 mice, and SJL mice for their susceptibilities to MHV-A59 infection. We confirmed that the expression of mCEACAM1a makes mice susceptible to lethal infection with MHV-A59. However, surprisingly, we found that cB61ba mice were profoundly resistant to MHV-A59 infection, while the virus could replicate at low levels in SJL mice in a self-limited, unapparent infection. Our results suggest that one or more as-yet-unidentified murine genes may also contribute to murine susceptibility and/or resistance to MHV-A59 infection.  相似文献   

11.
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1–73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1–73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1–73)GFP virus, indicate that this virus is genetically and phenotypically stable.  相似文献   

12.
Positive-strand RNA virus genomes are translated into polyproteins that are processed by viral proteases to yield functional intermediate and mature proteins. Coronaviruses (CoVs) carry genes that encode an nsp5 protease (also known as 3CLpro or Mpro) responsible for 11 maturation cleavages. The nsp5 structure contains two chymotrypsin-like domains (D1 and D2) and a unique domain (D3), and forms functional dimers. However, little is known of interactions or communication across the structure of the protease during nsp5 activity. Using reverse genetic mutagenesis of the CoV murine hepatitis virus (MHV) nsp5, we identified a new temperature-sensitive (ts) mutation in D2 of nsp5 (Ser133Ala) and confirmed a ts residue in D3 (Phe219Leu). Both D2-tsS133A and D3-tsF219L were impaired for viral replication and nsp5-mediated polyprotein processing at the nonpermissive temperature. Passage of tsS133A and tsF219L at the nonpermissive temperature resulted in emergence of multiple second-site suppressor mutations, singly and in combinations. Among the second-site mutations, a D2 His134Tyr change suppressed the ts phenotype of D2-tsS133A and D3-tsF219L, as well as the previously reported D2-tsV148A. Analysis of multiple CoV nsp5 structures, and alignment of nonredundant nsp5 primary sequences, demonstrated that ts and suppressor residues are not conserved across CoVs and are physically distant (>10 Å) from each other, from catalytic and substrate-binding residues, and from the nsp5 dimer interface. These findings demonstrate that long-distance communication pathways between multiple residues and domains of nsp5 play a significant role in nsp5 activity and viral replication, suggesting possible novel targets for non-active site inhibitors of nsp5.  相似文献   

13.
In murine 17 Cl 1 cells persistently infected with murine coronavirus mouse hepatitis virus strain A59 (MHV-A59), expression of the virus receptor glycoprotein MHVR was markedly reduced (S. G. Sawicki, J. H. Lu, and K. V. Holmes, J. Virol. 69:5535-5543, 1995). Virus isolated from passage 600 of the persistently infected cells made smaller plaques on 17 Cl 1 cells than did MHV-A59. Unlike the parental MHV-A59, this variant virus also infected the BHK-21 (BHK) line of hamster cells. Virus plaque purified on BHK cells (MHV/BHK) grew more slowly in murine cells than did MHV-A59, and the rate of viral RNA synthesis was lower and the development of the viral nucleocapsid (N) protein was slower than those of MHV-A59. MHV/BHK was 100-fold more resistant to neutralization with the purified soluble recombinant MHV receptor glycoprotein (sMHVR) than was MHV-A59. Pretreatment of 17 Cl 1 cells with anti-MHVR monoclonal antibody CC1 protected the cells from infection with MHV-A59 but only partially protected them from infection with MHV/BHK. Thus, although MHV/BHK could still utilize MHVR as a receptor, its interactions with the receptor were significantly different from those of MHV-A59. To determine whether a hemagglutinin esterase (HE) glycoprotein that could bind the virions to 9-O-acetylated neuraminic acid moieties on the cell surface was expressed by MHV/BHK, an in situ esterase assay was used. No expression of HE activity was detected in 17 Cl 1 cells infected with MHV/BHK, suggesting that this virus, like MHV-A59, bound to cell membranes via its S glycoprotein. MHV/BHK was able to infect cell lines from many mammalian species, including murine (17 Cl 1), hamster (BHK), feline (Fcwf), bovine (MDBK), rat (RIE), monkey (Vero), and human (L132 and HeLa) cell lines. MHV/BHK could not infect dog kidney (MDCK I) or swine testis (ST) cell lines. Thus, in persistently infected murine cell lines that express very low levels of virus receptor MHVR and which also have and may express alternative virus receptors of lesser efficiency, there is a strong selective advantage for virus with altered interactions with receptor (D. S. Chen, M. Asanaka, F. S. Chen, J. E. Shively, and M. M. C. Lai, J. Virol. 71:1688-1691, 1997; D. S. Chen, M. Asanaka, K. Yokomori, F.-I. Wang, S. B. Hwang, H.-P. Li, and M. M. C. Lai, Proc. Natl. Acad. Sci. USA 92:12095-12099, 1995; P. Nedellec, G. S. Dveksler, E. Daniels, C. Turbide, B. Chow, A. A. Basile, K. V. Holmes, and N. Beauchemin, J. Virol. 68:4525-4537, 1994). Possibly, in coronavirus-infected animals, replication of the virus in tissues that express low levels of receptor might also select viruses with altered receptor recognition and extended host range.  相似文献   

14.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   

15.
16.
Mouse hepatitis virus receptor (MHVR) is a murine biliary glycoprotein (Bgp1a). Purified, soluble MHVR expressed from a recombinant vaccinia virus neutralized the infectivity of the A59 strain of mouse hepatitis virus (MHV-A59) in a concentration-dependent manner. Several anchored murine Bgps in addition to MHVR can also function as MHV-A59 receptors when expressed at high levels in nonmurine cells. To investigate the interactions of these alternative MHVR glycoproteins with MHV, we expressed and purified to apparent homogeneity the extracellular domains of several murine Bgps as soluble, six-histidine-tagged glycoproteins, using a baculovirus expression system. These include MHVR isoforms containing four or two extracellular domains and the corresponding Bgp1b glycoproteins from MHV-resistant SJL/J mice, as well as Bgp2 and truncation mutants of MHVR and Bgp1b comprised of the first two immunoglobulin-like domains. The soluble four-domain MHVR glycoprotein (sMHVR[1-4]) had fourfold more MHV-A59 neutralizing activity than the corresponding soluble Bgp1b (sBgp1b) glycoprotein and at least 1,000-fold more neutralizing activity than sBgp2. Although virus binds to the N-terminal domain (domain 1), soluble truncation mutants of MHVR and Bgp1b containing only domains 1 and 2 bound virus poorly and had 10- and 300-fold less MHV-A59 neutralizing activity than the corresponding four-domain glycoproteins. In contrast, the soluble MHVR glycoprotein containing domains 1 and 4 (sMHVR[1,4]) had as much neutralizing activity as the four-domain glycoprotein, sMHVR[1-4]. Thus, the virus neutralizing activity of MHVR domain 1 appears to be enhanced by domain 4. The sBgp1b[1-4] glycoprotein had 500-fold less neutralizing activity for MHV-JHM than for MHV-A59. Thus, MHV strains with differences in S-glycoprotein sequence, tissue tropism, and virulence can differ in the ability to utilize the various murine Bgps as receptors.  相似文献   

17.
The C-X-C motif chemokine 12 (CXCL12, SDF1a) and its receptor, CXCR4, play a fundamental role in several biological processes, including hematopoiesis, cardiogenesis, cancer progression, and stem cell migration. Noninvasive monitoring of CXCL12 is highly desirable for optimizing strategies that combine mobilization of therapeutic cells to combat cancer or to assist in cardiac tissue repair after myocardial infarction. Here, we report on an MRI reporter gene system for directly monitoring CXCL12 expression in vivo. Glioma cells and human adipose-derived stem cells (hADSC) were transduced with the herpes simplex virus type-1-thymidine kinase (HSV1- tk) reporter gene expressed under the CXCL12 promoter. HSV1-tk expression resulted in accumulation of the PET tracer [125I]FIAU in vitro and in vivo and induced cell death after ganciclovir treatment. Furthermore, the results show that conditional expression of the reporter gene can be induced by hypoxia in transduced cells. Transduced hADSC were incubated with the CEST MRI probe 5-methyl-5, 6- dihydrothymidine (5-MDHT) and transplanted into swine heart. Transplanted cells were clearly visible on Chemical Exchange Saturation Transfer (CEST) MRI using a 3T clinical scanner. Therefore, we conclude that it is possible to image CXCL12 expression with MRI in a large animal model, opening up a possible route to clinical translation.  相似文献   

18.
19.
Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.  相似文献   

20.
Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号