共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3–6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment. 相似文献
3.
N. N. Li L. Chen X. H. Li Q. Li W. B. Zhang K. Takechi H. Takano X. F. Lin 《Biologia Plantarum》2017,61(1):95-105
Uridine diphosphate glucose dehydrogenase (UGDH) plays an important role in biosynthesis of hemicellulose by catalyzing oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in biosynthesis of the plant cell wall. In this study, a UGDH ortholog referred to as LgUGDH was isolated from Larix gmelinii using PCR and rapid amplification of cDNA ends techniques. Real-time PCR shows that the LgUGDH gene was expressed primarily in larch stems in addition to its roots and leaves, and Southern blot analysis indicates that UGDH is encoded by two paralogous genes in L. gmelinii. Overexpression of LgUGDH increased the content of soluble sugars and hemicelluloses and enhanced vegetative growth and cold tolerance in transgenic Arabidopsis thaliana. These results reveal that L. gmelinii UGDH participates in sucrose/polysaccharide metabolism and cell wall biosynthesis and may be a good candidate gene for enhancing plant growth, cold tolerance, and hemicellulose content. 相似文献
4.
In the yeast Saccharomyces cerevisiae, the molecular chaperone HSP26 has the remarkable ability to sense increases in temperature directly and can switch from
an inactive to a chaperone-active state. In this report, we analyzed the effect of expression of HSP26 in Arabidopsis thaliana plants and their response to high temperature stress. The hsp26 transgenic plants exhibited stronger growth than wild type plants at 45 °C for 16 h. The chlorophyll content and chlorophyll
fluorescence decreased much more in wild type than in transgenic plants. Moreover, the transgenic plants had higher proline
and soluble sugar contents, and lower relative electrical conductivity and malondialdehyde contents after high temperature
stress. Furthermore, we found that over-expression of HSP26 in Arabidopsis increased the amount of free proline, elevated the expression of proline biosynthetic pathway genes and therefore enhanced
Arabidopsis tolerance to heat stress. 相似文献
5.
6.
7.
8.
9.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. 相似文献
10.
11.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter
when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays
ADH1 5′ MAR, Nicotiana tabacum
Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed
between the cauliflower mosaic virus
35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated.
Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306. 相似文献
12.
Xiaofeng Zu Ping Liu Shunxi Wang Lei Tian Zhiqiang Tian Yanhui Chen Liuji Wu 《Plant Molecular Biology Reporter》2018,36(2):310-325
Histidine triad nucleotide-binding protein 1 (HINT1) is highly conserved in many species and plays important roles in various biological processes. However, little is known about the responses of HINT1 to abiotic stress in plants. Salt and drought stress are major limiting factors for plant growth and development, and their negative effects on crop productivity may threaten the world’s food supply. Previously, we identified a maize gene, Zm-HINT1, which encodes a 138-amino-acid protein containing conserved domains including the HIT motif, helical regions, and β-strands. Here, we demonstrate that overexpression of Zm-HINT1 in Arabidopsis confers salt and drought tolerance to plants. Zm-HINT1 significantly regulated Na+ and K+ accumulation in plants under salt stress. The improve tolerance characteristics of Arabidopsis plants that were overexpressing Zm-HINT1 led to increased survival rates after salt and drought treatments. Compared with control plants, those plants that overexpressed Zm-HINT1 showed increased proline content and superoxide dismutase activity, as well as lower malondialdehyde and hydrogen peroxide accumulation under salt and drought treatments. The expression patterns of stress-responsive genes in Arabidopsis plants that overexpressed Zm-HINT1 significantly differed from those in control lines. Taken together, these results suggest that Zm-HINT1 has potential applications in breeding and genetic engineering strategies that are designed to produce new crop varieties with improved salt and drought tolerance. 相似文献
13.
Mingle Wang Jing Zhuang Zhongwei Zou Qinghui Li Huahong Xin Xinghui Li 《Journal of Plant Biology》2017,60(5):452-461
14.
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily. Surprisingly, thirty AtTPS closely resemble, in all aspects of gene architecture, sequence relatedness and phylogenetic placement, the genes for plant monoterpene synthases, sesquiterpene synthases or diterpene synthases of secondary metabolism. Rapid evolution of these AtTPS resulted from repeated gene duplication and sequence divergence with minor changes in gene architecture. In contrast, only two AtTPS genes have known functions in basic (primary) metabolism, namely gibberellin biosynthesis. This striking difference in rates of gene diversification in primary and secondary metabolism is relevant for an understanding of the evolution of terpenoid natural product diversity. Eight AtTPS genes are interrupted and are likely to be inactive pseudogenes. The localization of AtTPS genes on all five chromosomes reflects the dynamics of the Arabidopsis genome; however, several AtTPS genes are clustered and organized in tandem repeats. Furthermore, some AtTPS genes are localized with prenyltransferase genes ( AtGGPPS, geranylgeranyl diphosphate synthase) in contiguous genomic clusters encoding consecutive steps in terpenoid biosynthesis. The clustered organization may have implications for TPS gene evolution and the evolution of pathway segments for the synthesis of terpenoid natural products. Phylogenetic analyses highlight events in the divergence of the TPS paralogs and suggest orthologous genes and a model for the evolution of the TPS gene family. 相似文献
15.
16.
17.
18.
19.
Brini F Hanin M Lumbreras V Amara I Khoudi H Hassairi A Pagès M Masmoudi K 《Plant cell reports》2007,26(11):2017-2026
Late Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid
(ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress. When compared to wild type plants, the Dhn-5 transgenic plants exhibited stronger growth under high concentrations of NaCl or under water deprivation, and showed a faster
recovery from mannitol treatment. Leaf area and seed germination rate decreased much more in wild type than in transgenic
plants subjected to salt stress. Moreover, the water potential was more negative in transgenic than in wild type plants. In
addition, the transgenic plants have higher proline contents and lower water loss rate under water stress. Also, Na+ and K+ accumulate to higher contents in the leaves of the transgenic plants. Our data strongly support the hypothesis that Dhn-5, by its protective role, contributes to an improved tolerance to salt and drought stress through osmotic adjustment. 相似文献
20.