首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张玉山  吴薇  徐才国 《遗传》2008,30(6):781-787
水稻每穗颖花数是水稻产量的重要构成因子之一。适当的抽穗期和株高对水稻高产是非常必要的。依据珍汕97和HR5衍生的重组自交系初步定位的结果, 利用高世代回交的方法构建了第7染色体同时控制抽穗期、株高和每穗颖花数的靶区段近等基因系(BC4F2); 利用基于重组自交系群体的杂合区段自交的方法构建了第8染色体同时控制抽穗期、株高和每穗颖花数的靶区段近等基因系, 并利用两个近等基因系对这两个多效区段的遗传效应进行了准确的评价。两个近等基因系的QTL分析结果表明, 3个性状都是由一个QTL或紧密连锁的QTL控制, 而且加性效应和显性效应的方向均相同; 同时3个性状在各自的近等基因系中呈现典型的双峰分布或不连续分布,这些结果暗示3个性状可能是一因多效的结果。文章还对抽穗期和株高与水稻产量的关系、3个性状显著正相关在育种中的应用及两种构建近等基因系方法的优缺点也进行了讨论。  相似文献   

2.
Studies that investigated the genetic basis of source and sink related traits have been widely conducted. However, the vascular system that links source and sink received much less attention. When maize was domesticated from its wild ancestor, teosinte, the external morphology has changed dramatically; however, less is known for the internal anatomy changes. In this study, using a large maize‐teosinte experimental population, we performed a high‐resolution quantitative trait locus (QTL) mapping for the number of vascular bundle in the uppermost internode of maize stem. The results showed that vascular bundle number is dominated by a large number of small‐effect QTLs, in which a total of 16 QTLs that jointly accounts for 52.2% of phenotypic variation were detected, with no single QTL explaining more than 6% of variation. Different from QTLs for typical domestication traits, QTLs for vascular bundle number might not be under directional selection following domestication. Using Near Isogenic Lines (NILs) developed from heterogeneous inbred family (HIF), we further validated the effect of one QTL qVb9‐2 on chromosome 9 and fine mapped the QTL to a 1.8‐Mb physical region. This study provides important insights for the genetic architecture of vascular bundle number in maize stem and sets basis for cloning of qVb9‐2.  相似文献   

3.
Root traits are important in improving nutrient and water use efficiency. Vertical root pulling resistance (VRPR) has been shown to be closely related to root system characteristics in maize (Zea mays L.). In the present study, two genetic populations derived from the same parents, one containing 218 recombinant inbred lines (RILs) and the other containing 187 advanced backcross BC4F3 lines, were genotyped using 184 SSR markers and evaluated for VRPR, grain yield (GY), stover yield (SY), and nitrogen uptake (Nup) under field conditions over 2 years. Our aims were (1) to locate QTLs associated with VRPR, SY, GY, and Nup, (2) to determine whether QTL detection is consistent between the BC4F3 and RIL populations, and (3) to identify backcross lines harboring favorable VRPR QTLs for use in future breeding programs. Using composite interval mapping (CIM), 12 and 17 QTLs were detected in BC4F3 and RIL populations, respectively. An important QTL region in bin 6.02 within the interval umc1006-umc1257 was found to control VRPR, SY, and Nup in both populations. These favorable alleles were contributed by the large-rooted parent Ye478. A significant positive correlation was detected between VRPR, SY, and Nup, but not between VRPR and GY. Backcross lines harboring VRPR QTLs could be useful germplasm for developing near isogenic lines (NILs) and for map-based cloning of genes controlling root growth.  相似文献   

4.
Quantitative Trait Locus (QTL) allelic variation was studied by analyzing near-isogenic lines (NILs) carrying homologous introgressions on chromosome 4 from three green-fruited wild tomato species. The NILs affect agronomic (yield, brix, fruit weight) and fruit (fruit shape, color, epidermal reticulation) traits in a similar manner. However, significant differences were detected in the magnitudes of the effects, the dominance deviations and epistatic interactions, indicating that those species carry different alleles for the QTL. As the QTL did not show any interaction across environments, gene-tic backgrounds or other QTLs, it can be used to introduce novel genetic variation into a broad range of cultivars. Analysis of new recombinant NILs showed that fruit traits are controlled by several linked genetic loci, whereas multiple genetic loci control the agronomic traits within the original introgression. The hypothesis that QTLs may be composed of multiple linked genes can not be rejected prior to implement projects for QTL isolation and cloning. Loci involved in color enhancement could not be related to any known gene involved in the carotenoid biosynthesis pathway, therefore it is hypothesized that the function of those loci must be related to the genetic regulation of the carotenoid biosynthetic pathway. Received: 14 April 2000 / Accepted: 12 May 2000  相似文献   

5.
A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.  相似文献   

6.
Many quantitative trait loci (QTLs) for quality traits havebeen located on the tomato genetic map, but introgression offavourable wild alleles into large fruited species is hamperedby co-localizations of QTLs with antagonist effects. The aimof this study was to assess the growth processes controlledby the main QTLs for fruit size and composition. Four nearlyisogenic lines (NILs) derived from an intraspecific cross betweena tasty cherry tomato (Cervil) and a normal-tasting large fruittomato (Levovil) were studied. The lines carried one (L2, L4,and L9) or five (Lx) introgressions from Cervil on chromosomes1, 2, 4, and 9. QTLs for fruit size could be mainly associatedwith cell division processes in L2 and L9, whereas cell expansionwas rather homogeneous among the genotypes, except Cervil forwhich the low expansion rate was attributed to low cell plasticity.The link between endoreduplication and fruit size remained unclear,as cell or fruit sizes were positively correlated with the cellDNA content, but not with the endoreduplication factor. QTLsfor fruit composition reflected differences in water accumulationrather than in sugar accumulation, except in L9 for which theup-regulation of sucrose unloading and hexose transport and/orstarch synthesis was suggested. This may explain the increasedamount of carbon allocated to cell structures in L9, which couldbe related to a QTL for fruit texture. In Lx, these effectswere attenuated, except on fruit size and cell division. Finally,the region on top of chromosome 9 may control size and compositionattributes in tomato, by a combination of QTL effects on celldivision, cell wall synthesis, and carbon import and metabolism. Key words: Cell division and expansion, endoreduplication, fruit quality, near isogenic line, osmotic regulation, quantitative trait locus, Solanum lycopersicum, starch, sugar and acid contents Received 22 July 2008; Revised 17 October 2008 Accepted 20 October 2008  相似文献   

7.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

8.
A intervarietal genetic map and QTL analysis for yield traits in wheat   总被引:9,自引:0,他引:9  
A new genetic linkage map was constructed based on recombinant inbred lines (RILs) derived from the cross between the Chinese winter wheat (Triticum aestivum L.) varieties, Chuang 35050 and Shannong 483 (ChSh). The map included 381 loci on all the wheat chromosomes, which were composed of 167 SSR, 94 EST-SSR, 76 ISSR, 26 SRAP, 15 TRAP, and 3 Glu loci. This map covered 3636.7 cM with 1327.7 cM (36.5%), 1485.5 cM (40.9%), and 823.5 cM (22.6%) for A, B, and D genome, respectively, and contained 13 linkage gaps. Using the RILs and the map, we detected 46 putative QTLs on 12 chromosomes for grain yield (GY) per m2, thousand-kernel weight (TKW), spike number (SN) per m2, kernel number per spike (KNS), sterile spikelet number per spike (SSS), fertile spikelet number per spike (FSS), and total spikelet number per spike (TSS) in four environments. Each QTL explained 4.42–70.25% phenotypic variation. Four QTL cluster regions were detected on chromosomes 1D, 2A, 6B, and 7D. The most important QTL cluster was located on chromosome 7D near the markers of Xwmc31, Xgdm67, and Xgwm428, in which 8 QTLs for TKW, SN, SSS and FSS were observed with very high contributions (27.53–67.63%).  相似文献   

9.
QTL mapping for plant-height traits has not been hitherto reported in high-oil maize. A high-oil maize inbred ‘GY220’ was crossed with two dent maize inbreds (‘8984’ and ‘8622’) to generate two connected F2:3 populations. Four plant-height traits were evaluated in 284 and 265 F2:3 families. Single-trait QTL mapping and multiple-trait joint QTL mapping was used to detect QTLs for the traits and the genetic relationship between plant height (PH) and two other plant-height traits. A total of 28 QTLs and 12 pairs of digenic interactions among detected QTLs for four traits were detected in the two F2:3 families. Only one marker was shared between the two populations. Joint analysis of PH with ear height (EH) and PH with top height (TH) detected 32 additional QTLs. Our results showed that QTL detection for PH was dependent on the genetic background of dent corn inbreds. Multiple-trait joint QTL analysis could increase the number of detected QTLs.  相似文献   

10.
The improvement for drought tolerance requires understanding of the genetic control of wheat (Triticum aestivum L.) reaction to drought. In this study, a set of 131 recombinant inbred lines of wheat were investigated under well-watered (WW) and drought stress (DS) environments across 2 years to map quantitative trait loci (QTLs) for yield and physiological traits. A total of 225 QTLs were detected, including 32 non-environment-specific loci that were significant in both DS and WW, one drought-specific locus and two watering-specific loci. Three consistently-expressed QTLs (QTkw-3A.2, QTss-1A, and QScn-7A.1) were identified in at least three environments and the QTkw-1D.1 was significant in DS across the 2 years. By unconditional and conditional QTL analysis, spike number per plant and kernel number per spike were more important than thousand-kernel weight for grain yield (GY) at the given genetic background. Meta-analysis identified 67 meta-QTLs that contained QTLs for at least two traits. High frequency co-location of QTLs was found among either the spike-related traits or the six physiological traits. Four photosynthesis traits (CHL, LWUE, P N, and C i) were co-located with GY and/or yield components on various MQTLs. The results provided QTLs that warrant further study for drought tolerance breeding and are helpful for understanding the genetic basis of drought tolerance and the genetic contribution of yield components to GY at individual QTL level in wheat.  相似文献   

11.
A marker-assisted back-crossing (MABC) breeding programme was conducted to improve the root morphological traits, and thereby drought tolerance, of the Indian upland rice variety, Kalinga III. This variety, the recurrent parent in the MABC, had not previously been used for quantitative trait locus (QTL) mapping. The donor parent was Azucena, an upland japonica variety from Philippines. Five segments on different chromosomes were targeted for introgression; four segments carried QTLs for improved root morphological traits (root length and thickness) and the fifth carried a recessive QTL for aroma. Some selection was made at non-target regions for recurrent parent alleles. We describe the selection made in three backcross (BC) generations and two further crosses between BC3 lines to pyramid (stack) all five target segments. Pyramids with four root QTLs were obtained in eight generations, completed in 6 years using 3,000 marker assays in a total of 323 lines. Twenty-two near-isogenic lines (NILs) were evaluated for root traits in five field experiments in Bangalore, India. The target segment on chromosome 9 (RM242-RM201) significantly increased root length under both irrigated and drought stress treatments, confirming that this root length QTL from Azucena functions in a novel genetic background. No significant effects on root length were found at the other four targets. Azucena alleles at the locus RM248 (below the target root QTL on chromosome 7) delayed flowering. Selection for the recurrent parent allele at this locus produced early-flowering NILs that were suited for upland environments in eastern India.  相似文献   

12.
Near-isogenic lines (NILs) differing with regard to disease QTLs provide valuable material for a more detailed study into the genetic basis of quantitative resistance. Previously obtained information on QTLs that show an effect on leaf rust (Puccinia hordei) in barley was used in a marker-assisted backcross programme. The genome origin in backcross plants was controlled through AFLP marker analysis and graphical genotyping. Plants obtained after the third generation of backcrossing sufficiently resembled the recurrent parent. For one QTL, BC3S1 plants were evaluated in a disease test and genotyped. NILs containing the desired QTL in homozygous condition in a recipient background were finally obtained. A disease test and verification of the marker genotype confirmed the identity of the NILs. Simultaneous with the backcross programme a simulation study on efficiency of marker-assisted backcrossing was performed.  相似文献   

13.
Kerley  S.J.  Huyghe  C. 《Plant and Soil》2001,236(2):275-286
Four quantitative trait loci (QTLs) for P uptake were previously identified in a rice population that had been developed from a cross between the indica landrace Kasalath (high P uptake) with the japonica cultivar Nipponbare (low P uptake). For further studies, near isogenic lines (NILs) were developed for a major QTL linked to marker C443 on chromosome 12 and for a minor QTL linked to C498 on chromosome 6. On a highly P-deficient upland soil (aerobic conditions), NIL-C443 had three to four times the P uptake of Nipponbare, whereas the advantage of NIL-C498 was in the range of 60–90%. The superiority of NILs over Nipponbare vanished when grown in the same soil under anaerobic paddy conditions. All genotypes had high P uptake when P was supplied at a rate of 60 kg P ha–1, regardless of soil conditions. These results confirmed the presence of both QTLs and furthermore implied that QTLs affected absorption mechanisms that specifically increased P uptake in a P deficient upland soil.Additional experiments were conducted to investigate if the effect of QTLs is linked to an increase in root growth or due to more efficient P uptake per unit root size (higher root efficiency). Root size did not differ significantly between genotypes in the plus-P treatment. P deficiency, however, reduced the root surface area of Nipponbare by more than 80% whereas NIL-C443 maintained almost half of its non-stress root surface area. The low root growth of Nipponbare observed under P deficiency was probably the result of insufficient P uptake to sustain plant growth, including root growth. Genotypic differences in the ability to maintain root growth, therefore are likely caused by some mechanism that increases the efficiency of roots to access P forms not readily available. This however, only had an effect in aerobic soil. Potential mechanisms leading to higher P uptake of NILs are discussed.  相似文献   

14.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

15.
Carbon isotope discrimination (Δ13C) is considered a useful indicator for indirect selection of grain yield (GY) in cereals. Therefore, it is important to evaluate the genetic variation in Δ13C and its relationship with GY. A doubled haploid (DH) population derived from a cross of two common wheat varieties, Hanxuan 10 (H10) and Lumai 14 (L14), was phenotyped for Δ13C in the flag leaf, GY and yield associated traits in two trials contrasted by water availability, specifically, rain‐fed and irrigated. Quantitative trait loci (QTLs) were identified by single locus and two locus QTL analyses. QTLs for Δ13C were located on chromosomes 1A, 2B, 3B, 5A, 7A and 7B, and QTLs for other traits on all chromosomes except 1A, 4D, 5A, 5B and 6D. The population selected for high Δ13C had an increased frequency of QTL for high Δ13C, GY and number of spikes per plant (NSP) when grown under rain‐fed conditions and only for high Δ13C and NSP when grown under irrigated conditions, which was consistent with agronomic performance of the corresponding trait values in the high Δ13C progeny; that is, significantly greater than that in the low Δ13C. Therefore, selection for Δ13C was beneficial in increasing grain yield in rain‐fed environments.  相似文献   

16.
17.
Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea mays L.) breeding practice. Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs). One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were used to genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW), 10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1) per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval between bnlg1893 and chr2-236477 (chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simultaneously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved in chromosomal region at bin 2.03 was detected for HKW; no significant QTL × environment interactions were observed. These results provide the common QTLs and for marker-assisted breeding.  相似文献   

18.
Norin-PL8 is a cold-tolerant variety of rice (Oryza sativa L.) that was developed by introgressing chromosomal segments from a cold-tolerant javanica variety, Silewah. We previously detected quantitative trait loci (QTLs) for cold tolerance of Norin-PL8 in the introgressions on chromosomes 3 and 4. We provide fine mapping of the QTLs on chromosome 4 and the association between the QTLs and anther length, which has been reported to be a major component of cold tolerance. Interval mapping using a segregating population derived from an advanced backcross progeny indicated that a QTL for cold tolerance is probably located from the center to the proximal end of the introgression. For fine mapping, we developed a set of near-isogenic lines (NILs) from recombinants in the segregating population. Comparison of cold tolerance between the NILs indicated that either the proximal end or the center of the introgression is necessary for cold tolerance. From these results, we concluded that there are at least two QTLs for cold tolerance, tentatively designated as Ctb-1 and Ctb-2, in the introgression on chromosome 4. The map distance between Ctb-1 and Ctb-2 is estimated to be 4.7–17.2 cM. In order to investigate the mechanism underlying cold tolerance by the QTLs, we compared anther lengths of the NILs. The results indicate that both Ctb-1 and Ctb-2 are associated with anther length. Received: 17 July 2000 / Accepted: 1 February 2001  相似文献   

19.
20.
Grain yield (GY) is a genetically complex and physiologically multiplicative trait which can be decomposed into the components kernel number (KN) and 100-kernel weight (HKW). Genetic analysis of these less complex yield component traits may give insights into the genetic architecture and predictive ability of complex traits. Here, we investigated how the incorporation of component traits and epistasis in quantitative trait locus (QTL) mapping approaches influences the accuracy of GY prediction. High-density genetic maps with 7,000–10,000 polymorphic single nucleotide polymorphisms were constructed for four biparental populations. The populations comprised between 99 and 227 doubled haploid maize lines which were phenotyped in field trials in two environments. Heritability was highest for HKW (88–89 %), intermediate for KN (72–80 %), and lowest for GY (64–83 %). Mapped QTL explained in total 21–55 %, 22–67 %, and 24–75 % of the genotypic variance for GY, KN, and HKW, respectively. Support intervals of QTL were short, indicating that QTL were located with high precision. Co-located QTLs with same parental origin of favorable alleles were detected within populations for different traits and between populations for the same traits. Using GY predictions based on the detected QTL, prediction accuracies (r) determined by cross validation ranged from 0.18 to 0.52. Epistatic models did not outperform the corresponding additive models. In conclusion, models based on QTL positions of component traits support the identification of favorable alleles for multiplicative traits and provide a basis to select superior inbred lines by marker-assisted breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号