首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John  Plager 《Cell proliferation》1975,8(6):517-528
Intravenous infusions of hydroxyurea were established in mice and maintained for periods up to 48 hr. The influence of different rates of hydroxyurea infusion on the number of viable cells gathered in S phase was studied in eight different mouse tissues. An infusion rate which was sufficiently slow not to block thymidine incorporation completely, resulted in gathering of cells in S phase while offering some protection against hydroxyurea-induced cell death. The duration of the period of DNA synthesis following release from hydroxyurea inhibition appeared to be shortened in some tissues. After the release of hydroxyurea blockades maintained for 12–24 hr, each of the tissues showed sharp increases in mitotic activity and peak mitotic index values were as much as twenty times greater than values found in tissues of control animals. An important finding was that the time of maximal mitotic activity for different tissues after release of blockade could differ by many hours.  相似文献   

2.
EMT6 mouse mammary tumors were treated in vivo with 5 mg/mouse of hydroxyurea (HU) or 300 rads of X-rays. The proliferation of the tumor cells was followed for 28 hr after treatment. Changes in the 3H-TdR labeling index, the mitotic index, the specific activity of the 3H-TdR-labeled DNA, and the proportion of suspended, clonogenic cells in the S phase of the cell cycle were examined and compared. Evidence was found for reassortment of the surviving cells in treated tumors into partially synchronous cohorts. The partial synchrony in the proliferation of the surviving cells was not accurately predicted by the changes in the labeling index and the mitotic index. The changes in DNA specific activity proved unacceptable as an indicator of cell proliferation in solid EMT6 tumors treated with low doses of radiation or HU.  相似文献   

3.
Allium cepa L. meristems were used as a plant model to study the p53-independent control of S and G2 phases by checkpoint pathways, in eukaryotic cells. Checkpoint blocks were induced at early and mid S by hydroxyurea. After their spontaneous override, cells became accumulated in G2-prophase, giving rise later on to a delayed mitotic wave. Cell growth was maintained during the checkpoint blocks, as the delayed mitoses were larger in size than the control ones. Under continuous hydroxyurea treatment, the delayed mitotic was formed by two subpopulations: normal mitoses corresponding to cells having properly recovered from the checkpoint block, and abnormal ones resulting from checkpoint adaptation. These latter cells displayed broken chromatids as they had unduly overriden the G2 checkpoint block, without completing DNA repair. The frequency of the checkpoint-adapted mitoses increased with the hydroxyurea concentration from 0.25 to 1.0 mM. However, from 1 mM hydroxyurea upwards, some of the cells lost their competence for checkpoint adaptation. Therefore, the dose of a genotoxic agent that still allows G2 checkpoint adaptation should always be applied in order to get rid of uncontrolled proliferating cells. This is specially suitable for cells lacking a functional p53 protein.  相似文献   

4.
Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1, S, or G2 + M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

5.
Standardized (light from 0600 to 1800) C3HS mice, hepatectomized at different circadian stages, were killed at 1400 (the peak time of mitotic activity in intact mice). The higher values of mitotic index were those of mice operated at 1400, 48 hr before. The curve of mitotic activity of the regenerating liver of mice operated at 1400 and that of mice operated at 0200 (an opposite time in the circadian stage) are, both, grossly in phase with the curves of mitotic index in young and adult mice liver. The amplitude of the first peak of mitotic activity in mice operated at 0200 was dramatically lower than that of animals operated at 1400. The same applies to hepatocytes as well as to the sinusoid litoral population of cells. It is concluded that 1400 hr, as contrast to 0200 hr, is an optimal time for hepatectomy if one wants to obtain the highest mitotic index first peak during regeneration in a normal phase position (the position of the mitotic index peak in the liver of normal young and adult mice).  相似文献   

6.
Standardized (light from 0600 to 1800) C3HS mice, hepatectomized at different circadian stages, were killed at 1400 (the peak time of mitotic activity in intact mice). The higher values of mitotic index were those of mice operated at 1400, 48 hr before. The curve of mitotic activity of the regenerating liver of mice operated at 1400 and that of mice operated at 0200 (an opposite time in the circadian stage) are, both, grossly in phase with the curves of mitotic index in young and adult mice liver. The amplitude of the first peak of mitotic activity in mice operated at 0200 was dramatically lower than that of animals operated at 1400. The same applies to hepatocytes as well as to the sinusoid litoral population of cells. It is concluded that 1400 hr, as contrast to 0200 hr, is an optimal time for hepatectomy if one wants to obtain the highest mitotic index first peak during regeneration in a normal phase position (the position of the mitotic index peak in the liver of normal young and adult mice).  相似文献   

7.
EMT6 mouse mammary tumors were treated in vivo with 5 mg/mouse of hydroxyurea (HU) or 300 rads of X-rays. the proliferation of the tumor cells was followed for 28 hr after treatment. Changes in the 3H-TdR labeling index, the mitotic index, the specific activity of the 3H-TdR-labeled DNA, and the proportion of suspended, clonogenic cells in the S phase of the cell cycle were examined and compared. Evidence was found for reassortment of the surviving cells in treated tumors into partially synchronous cohorts. the partial synchrony in the proliferation of the surviving cells was not accurately predicted by the changes in the labeling index and the mitotic index. the changes in DNA specific activity proved unacceptable as an indicator of cell proliferation in solid EMT6 tumors treated with low doses of radiation or HU.  相似文献   

8.
The pronounced diurnal rhythm in DNA distributions of the hamster cheek pouch epithelium both in the S fraction and in the (G2 + M) fraction was compared with previous studies of the changes in tritiated thymidine labelling index and mitotic activity. The DNA distributions were obtained by flow cytometry after ultrasonic disaggregation of the isolated epithelium into a suspension of single nuclei. The DNA distributions were analysed with the computer program of J. Fried (1976) and by planimetry. The S fraction was higher than the autoradiographic labelling index during the whole 24 hr period. Only the computer fitted S fraction and the labelling index had the same difference between maximal and minimal values, and maxima at the same time of day. The DNA distributions showed a diurnal release of G1 cells into S phase proceeding through (G2 + M) phase and returning to G1 phase within a 24 hr period.  相似文献   

9.
Cell Synchrony Techniques. I. A Comparison of Methods   总被引:3,自引:0,他引:3  
Abstract Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1 S, or G2+ M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

10.
Circadian rhythms in epidermal basal cell-cycle progression in hairless mouse skin have been repeatedly demonstrated. A dose of 10 mg/animal hydroxyurea (HU), given to inhibit DNA synthesis was injected intraperitoneally to two groups of hairless mice. One group was injected at 10.00 hours MET, when the cell-cycle progression and cell division rate are relatively high, and another group was injected at 20.00 hours, when the same variables are at minimum values. Various cell kinetic methods--[3H]TdR autoradiography, DNA flow cytometry and the stathmokinetic method (Colcemid)--were used to study HU-induced alterations in cell kinetics. Hydroxyurea (HU) immediately reduced the labelling index (LI) to less than 10% of controls when injected at both times of the day, and higher then normal values were observed 8 hr later. A subsequent decrease towards normal values was steeper in the 20.00 hours injected group. The proportion of cells with S-phase DNA content was transiently reduced in both series, but the reduction was less pronounced and control values were reached earlier in the series injected at 10.00 hours. The observed alterations in LI and fraction of cells in S phase were followed by comparable alterations in the fraction of cells in G2 and in the mitotic rate. Hence the changes in G2 and mitotic rate are easily explained as consequences of the previous perturbations in the S phase. The time-dependent differences in the cell kinetic perturbations caused by HU in the S phase may be explained by a circadian-phase-dependent action of HU on the influx and efflux of cells to and from the S phase, respectively. At 10.00 hours the efflux of cells from S is most heavily inhibited; at 20.00 hours the influx is predominantly blocked. Hence, when physiological flux is high HU mainly blocks the efflux from S, but when flux normally is low, HU mainly blocks the entrance to S. Within 20 hours after the HU injection, the cell kinetic variables had approached the unperturbed circadian pattern.  相似文献   

11.
The pronounced diurnal rhythm in DNA distribution of the hamster check pouch epithelium both in the S fraction and in the (G2+ M) fraction was compared with previous studies of the changes in tritiated thymidine labelling index and mitotic activity. the DNA distributions were obtained by flow cytometry after ultrasonic disaggregation of the isolated epithelium into a suspension of single nuclei. the DNA distributions were analysed with the computer program of J. Fried (1976) and by planimetry. the S fraction was higher than the autoradiographic labelling index during the whole 24 hr period. Only the computer fitted S fraction and the labelling index had the same difference between maximal and minimal values, and maxima at the same time of day. the DNA distributions showed a diurnal release of G1 cells into S phase proceeding through (G2+ M) phase and returning to G1 phase within a 24 hr period.  相似文献   

12.
Abstract. Hydroxyurea induces profound changes in the pluripotential haemopoietic stem cell (CFU-s) kinetics. The main feature of these changes is a synchronous entry of resting Go CFU-s into the cell cycle. The analysis of the passage of the CFU-s cohort through the cell cycle has been largely based on the examination of the fraction of CFU-s which synthesize DNA in the S phase of the cell cycle. This analysis has, however, been hampered by the fact that both the sensitivity of the S phase CFU-s to hydroxyurea and their sensitivity in the [3H] thymidine suicide technique vary as the cells pass through the S phase. Methods which overcome these difficulties have been used in the experiments presented in this paper.
It was demonstrated that hydroxyurea kills only about 80% of the S phase CFU-s. The sensitivity to hydroxyurea gradually decreases as the cells approach the middle part of the S phase and increases again as the cells enter the late portions of the S phase.
The degree of CFU-s synchrony at the point of entry into and exit from, the S phase has been established. Mathematical analysis of the available data suggests that CFU-s pass through the S phase with a mean transit time of 4–79 hr (standard deviation, 1.45 hr).
Hydroxyurea, administered in vivo , blocks CFU-s in the late G1 phase. The duration of this G1-S block, induced by a dose of 1000 mg of hydroxyurea per kg body weight, is approximately 2 hr. The CFU-s in the middle of the S phase, which survive hydroxyurea administration, are also blocked in their passage through the S phase. These cells, however, seem to finish the S phase with a delay of approximately 2 hr.  相似文献   

13.
Stimulation of liver cell multiplication was obtained under two different experimental conditions. (1) A single injection of casein solution resulted in (a) an identical synchronized mitotic wave response in 10-day old male and female rats and (b) a significantly lower response in adult male rats compared to females, a difference which was reduced by castration of males at birth but essentially maintained if animals were operated when 10 days old. (2) Partial hepatectomy shortly after puberty resulted in active hepatocyte multiplication occurring 3 hr earlier in females were ovariectomized at birth and significantly reduced when they were spayed at a later age. Hepatocytes of castrated females entered actively into S phase 2 hr later than the sham-operated controls. Unilateral ovariectomy on the other hand indicated that during compensatory and/or hypercompensatory activity of the single ovary there was a maximum difference between the male and female rate of [3H]thymidine uptake in liver nuclei 20 hr after hepatectomy. A further kinetic study (t = 25, 30,40, 65, 90 hr) indicated no significant sex-related difference in the number of S phases per 10,000 cells. The DNA content of regenerating versus control livers was comparable in both sexes at t = 22 and 90 hr but higher in females at t = 40 and 65 hr. A possible early postnatal interference of certain hormonal mechanisms in the receptivity to mitotic stimuli is postulated and discussed.  相似文献   

14.
Circadian rhythms in epidermal basal cell-cycle progression in hairless mouse skin have been repeatedly demonstrated. A dose of 10 mg/animal hydroxyurea (HU), given to inhibit DNA synthesis was injected intraperitoneally to two groups of hairless mice. One group was injected at 10.00 hours MET, when the cell-cycle progression and cell division rate are relatively high, and another group was injected at 20.00 hours, when the same variables are at minimum values. Various cell kinetic methods—[3H]TdR autoradiography, DNA flow cytometry and the stathmokinetic method (Colcemid)—were used to study HU-induced alterations in cell kinetics. Hydroxyurea (HU) immediately reduced the labelling index (LI) to less than 10% of controls when injected at both times of the day, and higher then normal values were observed 8 hr later. A subsequent decrease towards normal values was steeper in the 20.00 hours injected group. the proportion of cells with S-phase DNA content was transiently reduced in both series, but the reduction was less pronounced and control values were reached earlier in the series injected at 10.00 hours. the observed alterations in LI and fraction of cells in S phase were followed by comparable alterations in the fraction of cells in G2 and in the mitotic rate. Hence the changes in G2 and mitotic rate are easily explained as consequences of the previous perturbations in the S phase. The time-dependent differences in the cell kinetic perturbations caused by HU in the S phase may be explained by a circadian-phase-dependent action of HU on the influx and efflux of cells to and from the S phase, respectively. At 10.00 hours the efflux of cells from S is most heavily inhibited; at 20.00 hours the influx is predominantly blocked. Hence, when physiological flux is high HU mainly blocks the efflux from S, but when flux normally is low, HU mainly blocks the entrance to S. Within 20 hours after the HU injection, the cell kinetic variables had approached the unperturbed circadian pattern.  相似文献   

15.
Synchronized CHO cells in S phase were treated with different concentrations of hydroxyurea for various time intervals. In the presence of 2 mM hydroxyurea DNA replication was inhibited by more than 95% and S phase cells were killed within 20 h. With 0.1 mM hydroxyurea, however, when DNA replication was inhibited by about 70%, more than 90% of S phase cells survived a 40 h treatment. DNA replication in the presence of hydroxyurea had normal characteristics for up to 5 h except that the average rate of DNA chain elongation (fork displacement) was reduced. Fluorodeoxyuridine, excess thymidine, and cycloheximide caused a similar loss of reproductive viability as hydroxyurea, if DNA replication was inhibited to the same extent. The results suggest that killing of S phase cells might be induced by inhibition of DNA replication itself, i.e. by completely blocking displacement of forks.  相似文献   

16.
Hydroxyurea treatment affects the G1 phase in next generation CHO cells   总被引:1,自引:0,他引:1  
DNA replication kinetics were studied in populations of synchronized CHO cells treated in the previous generation with hydroxyurea. These CHO cells were re-synchronized by selective detachment of mitotic cells after previously synchronized G1 traversing cultures were treated with 0.1 mM and 2 mM hydroxyurea for 9 and 13 h. Our results show that these cells exhibit a shortening of G1 of at least 1 h relative to cells selected in mitosis from untreated exponentially growing cultures. Survival studies indicated that the hydroxyurea treatments did not affect plating efficiencies. Cell viability was reduced when the initially synchronized populations were blocked with 2 mM, but not 0.1 mM hydroxyurea for greater than 13 h. DNA replication measurements after these blocks showed that all cultures treated with 2 mM hydroxyurea for either 9, 13 or 15 h were blocked at the same point near the G1/S boundary, and then progressed through S phase with similar kinetics. The observed shortening of G1 in the next generation of these cells was independent of both the concentration (0.1 or 2.0 mM) and the time (9 or 13 h) of the hydroxyurea block. These results suggest that specific events relating to the next cell generation can be uncoupled from DNA synthesis and can occur when hydroxyurea inhibits normal cell cycle traverse of G1 cells into and through S phase.  相似文献   

17.
M H Fox  R A Read  J S Bedford 《Cytometry》1987,8(3):315-320
Synchronized cell populations are necessary to study many aspects of cell biology. We have developed a method to obtain highly synchronized Chinese hamster ovary cell populations in S phase or G2 phase by utilizing mitotic selection followed by incubation with either hydroxyurea, aphidicolin, or methotrexate for 12 h. Flow cytometry analysis shows that the coefficient of variation in the spread of the cell population in S phase is as low as 6%. Drug toxicity studies compare the effects of the various drugs on G1 and S phase cells. The use of aphidicolin or hydroxyurea results in the most highly synchronized cell populations, but methotrexate yields inadequate synchronization. These results demonstrate that both aphidicolin and hydroxyurea are useful drugs for obtaining highly synchronized cell populations after an initial synchrony in mitosis. Aphidicolin is perhaps the best choice because of less toxicity to S phase cells when used in low concentrations.  相似文献   

18.
DNA synthesis inhibition and recovery in L1210 and S-180 ascites tumors following 1-beta-D-arabinofuranosylcytosine (Ara-C) and hydroxyurea (HU) were measured autoradiographically as a basis for optimizing drug schedules. Tumor bearing mice, 10(6) cells day 0, were treated on day 4 with 20, 200 or 2000 mg/kg Ara-C or 50, 300 or 1800 mg/kg HU. At various intervals following drug, [3H]thymidine was administered i.p. and mice were killed 1 hr later. Tumor cells were analyzed for labeling index (LI) and grain count (GC) to determine the percentage of cells in S phase and the distribution of DNA synthesis rates among the labeled cells, respectively. Following each dose of HU, DNA synthesis was inhibited completely. Recovery of LI was rapid and approached control values by 6 hr. Following each dose of Ara-C, DNA synthesis was inhibited completely for at least 6 hr. Recovery of LI was first noted 6 hr following 20 mg/kg Ara-C and 9 hr following 200 mg/kg. Following both doses the LI reached 100% of the control value by 26 hr. GC analysis indicated that following Ara-C treatment, DNA synthesis was reinitiated first with cells with low GC from 6 to 12 hr followed by cells with increasing GC from 12 to 20 hr. The labeling intensity reached control values by 20 hr and an 'overshoot' occurred by 26 hr. These data suggest that the recovery of DNA synthesis rate is a gradual process. Survival data for mice receiving two doses of Ara-C indicated that the optimal interval for retreatment following the lower dose of Ara-C occurred by 6 hr as compared to 12--16 hr for the higher dose. These times coincided in both instances with recovery of LI to 33--50% of control values. Early recovery of LI may be the best method currently available for estimating the optimal time for retreatment with an S phase specific drug.  相似文献   

19.
After repeated applications of cellophane tape to the dorsal skin of hairless mice, the proliferative response in the treated epidermis was estimated by three different methods. The mitotic rate was determined in the interfollicular epidermis using the Colcemid technique, and the DNA synthetic activity was estimated after 3H-thymidine injection by counting labelled interfollicular cells in autoradiographs and by determining the specific activity of epidermal DNA. An initial 40–50% inhibition of DNA synthesis and mitosis was followed by an increase in the labelling index and the mitotic rate 8–10 hr after tape stripping. By 24 hr, peak values 5–6 times the controls were attained for both parameters. The labelling index and the mitotic rate were nearly normal at 3–4 days, but a second small peak was seen on day 5. Normal values were found on days 6 and 8. A similar pattern of response was found biochemically, but the peak of DNA specific activity was much broader and the extent of the increase was only about half as great as the increase in the labelling index. Possible reasons for these differences are discussed.  相似文献   

20.
Cell cycle variations in chromatin structure detected by DNase I   总被引:3,自引:0,他引:3  
We have recently developed a reproducible method for the use of DNase I as a sensitive probe of chromatin structure (Prentice, D A & Gurley, L R, Biochim biophys acta 740 (1983) 134) [12] and have used this probe to investigate chromatin structure during the interphase of the cell cycle. Chinese hamster cells (line CHO) were synchronized by: (1) mitotic detachment, to obtain M-phase cells; (2) isoleucine deprivation, to obtain G1-phase cells; and (3) sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea, to obtain cells blocked at the start of S phase. The cells were released from the various blocking schemes and nuclei were isolated and digested with DNase I at various times. The digestion kinetics were monitored to detect possible changes in chromatin condensation through the cell cycle. The chromatin was much more accessible to DNase I in G1 phase than in S or G2 phase, with only small variations in structure detected in late G1 and very early S phase. From early S phase up to mitosis, the chromatin became increasingly condensed and inaccessible to DNase I action. These results support the concept of a chromatin condensation cycle during interphase as well as during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号