首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.  相似文献   

2.
ULTRACENTRIFUGATION IN SUCROSE DENSITY GRADIENTS WAS EMPLOYED TO ESTIMATE THE MOLECULAR WEIGHTS AND TO DETERMINE POSSIBLE PHYSICAL AGGREGATION OF THE FIVE ENZYMES CATALYZING STEPS TWO TO SIX IN THE PRECHORISMIC ACID PORTION OF THE POLYAROMATIC SYNTHETIC PATHWAY IN SIX SPECIES OF BACTERIA: Escherichia coli, Salmonella typhimurium, Aerobacter aerogenes, Bacillus subtilis, Pseudomonas aeruginosa, and Streptomyces coelicolor. The five enzymes were not aggregated in extracts of any of the species examined, nor are the genes encoding these enzymes clustered in those bacterial species for which genetic evidence exists. (An initial examination of the blue-green alga Anabaena variabilis indicates nonaggregation in this species also.) This situation in bacteria is in marked contrast to that found in Neurospora crassa and other fungi in which the same five enzymes are associated as an aggregate encoded (at least in the case of N. crassa) by a cluster of five genes. In addition, also in contrast to N. crassa, no evidence was obtained for more than one kind of dehydroquinase activity in any of the bacteria examined. These comparative results are discussed in relation to the origin, evolution, and functional significance of the gene-enzyme relationships existing in the early steps of aromatic biosynthesis in bacteria and fungi.  相似文献   

3.
The coenzyme A (CoA)-activated C5-dicarboxylic acids mesaconyl-CoA and beta-methylmalyl-CoA play roles in two as yet not completely resolved central carbon metabolic pathways in bacteria. First, these compounds are intermediates in the 3-hydroxypropionate cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium. Second, mesaconyl-CoA and beta-methylmalyl-CoA are intermediates in the ethylmalonyl-CoA pathway for acetate assimilation in various bacteria, e.g., in Rhodobacter sphaeroides, Methylobacterium extorquens, and Streptomyces species. In both cases, mesaconyl-CoA hydratase was postulated to catalyze the interconversion of mesaconyl-CoA and beta-methylmalyl-CoA. The putative genes coding for this enzyme in C. aurantiacus and R. sphaeroides were cloned and heterologously expressed in Escherichia coli, and the proteins were purified and studied. The recombinant homodimeric 80-kDa proteins catalyzed the reversible dehydration of erythro-beta-methylmalyl-CoA to mesaconyl-CoA with rates of 1,300 micromol min(-1) mg protein(-1). Genes coding for similar enzymes with two (R)-enoyl-CoA hydratase domains are present in the genomes of Roseiflexus, Methylobacterium, Hyphomonas, Rhodospirillum, Xanthobacter, Caulobacter, Magnetospirillum, Jannaschia, Sagittula, Parvibaculum, Stappia, Oceanicola, Loktanella, Silicibacter, Roseobacter, Roseovarius, Dinoroseobacter, Sulfitobacter, Paracoccus, and Ralstonia species. A similar yet distinct class of enzymes containing only one hydratase domain was found in various other bacteria, such as Streptomyces species. The role of this widely distributed new enzyme is discussed.  相似文献   

4.
Restriction of bacteriophage plaque formation in Streptomyces spp.   总被引:15,自引:11,他引:4  
Several Streptomyces species that produce restriction endonucleases were characterized for their ability to propagate 10 different broad host range bacteriophages. Each species displayed a different pattern of plaque formation. A restrictionless mutant of S. albus G allowed plaque formation by all 10 phages, whereas the wild-type strain showed plaques with only 2 phages. DNA isolated from three of the phages was analyzed for the presence of restriction sites for Streptomyces species-encoded enzymes, and a very strong correlation was established between the failure to form plaques on Streptomyces species that produced particular restriction enzymes and the presence of the corresponding restriction sites in the phage DNA. Also, the phages that lacked restriction sites in their DNA generally formed plaques on the corresponding restriction endonuclease-producing hosts at high efficiency. The DNAs from the three phages analyzed also generally contained either many or no restriction sites for the Streptomyces species-produced enzymes, suggesting a strong evolutionary trend to either eliminate all or tolerate many restriction sites. The data indicate that restriction plays a major role in host range determination for Streptomyces phages. Analysis of bacteriophage host ranges of many other uncharacterized Streptomyces hosts has identified four relatively nonrestricting hosts, at least two of which may be suitable hosts for gene cloning. The data also suggest that several restriction systems remain to be identified in the genus Streptomyces.  相似文献   

5.
Cyclophilins are folding helper enzymes and represent a family of the enzyme class of peptidyl-prolyl cis-trans isomerases. Here, we report the molecular cloning and biochemical characterization of SanCyp18, an 18-kDa cyclophilin from Streptomyces antibioticus ATCC11891 located in the cytoplasm and constitutively expressed during development. Amino acid sequence analysis revealed a much higher homology to cyclophilins from Gram negative bacteria than to known cyclophilins from Streptomyces or other Gram positive bacteria. SanCyp18 is inhibited weakly by CsA, with a K(i) value of 21 microM, similar to cyclophilins from Gram negative bacteria. However, this value is more than 20-fold higher than the K(i) values reported for cyclophilins from other Gram positive bacteria, which makes SanCyp18 unique within this group. The presence of SanCyp18 in Streptomyces is likely due to horizontal gene transmission from Gram-negative bacteria to Streptomyces.  相似文献   

6.
To study the effect of plant growth on potato-associated bacteria, the composition and properties of bacteria colonizing the endosphere of field-grown potato were analyzed by a multiphasic approach. The occurrence and diversity of potato-associated bacteria were monitored by a cultivation-independent approach, using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of plant-specific communities. However, endophytic populations correlated to a certain extent with plant growth performance. Endophytes were also isolated from plants that grew well or grew poorly and were identified by partial sequencing of the 16S rRNA genes. A broad phylogenetic spectrum was found among isolates and differently growing plants hosted different bacterial populations. In an approach to investigate the plant-growth-promoting potential of potato-associated bacteria, a total of 35 bacteria were screened by dual testing for in vitro antagonism towards (i) the fungal pathogens Verticillium dahliae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Phytophthora cactorum and (ii) the bacterial pathogens Erwinia carotovora, Streptomyces scabies, and Xanthomonas campestris. The proportion of isolates with antagonistic activity was highest against Streptomyces sp. (43%) followed by those against Xanthomonas sp. (29%). As all plants showed more or less severe disease symptoms of scab disease caused by Streptomyces scabies, we assume that the presence of the pathogen induced the colonization of antagonists. The antifungal activity of the isolates was generally low. The biotechnological potential of endophytic isolates assessed by their antagonistic activity and by in vitro production of enzymes, antibiotics, siderophores, and the plant growth hormone indole-1,3-acetic acid was generally high. Overall, seven endophytes were found to antagonize fungal as well as bacterial pathogens and showed a high production of active compounds and were therefore considered promising biological control agents.  相似文献   

7.
In contrast to the Gram-negative bacteria, Gram-positive bacteria such as Streptomyces lack a mucopolysaccharide cell wall which allows them to produce and secrete a variety of proteins directly into their environment. In an effort to understand and eventually exploit the synthesis and secretion of proteins by Streptomyces, we identified and characterized two naturally occurring abundantly produced proteins in culture supernatants of Streptomyces lividans and Streptomyces longisporus. We purified these 10-kDa proteins and obtained partial amino acid sequence information which was then used to design oligonucleotide probes in order to clone their genes. Analysis of the sequence data indicated that these proteins were related to each other and to several other previously characterized Streptomyces protein protease inhibitors. We demonstrate that both proteins are protein protease inhibitors with specificity for trypsin-like enzymes. The presumptive signal peptidase cleavage sites and subsequent aminopeptidase products of each protein are characterized. Finally, we show that the cloned genes contain all of the information necessary to direct synthesis and secretion of the proteins by Streptomyces spp. or Escherichia coli.  相似文献   

8.
The Cerrado is the second largest Brazilian biome, yet little is known about its wild fauna, flora and microbiota. This work aimed to identify epiphytic bacteria present in fruits native to three different regions of the Cerrado and to select cellulase-producing bacteria. Culture-dependent and culture-independent (PCR-DGGE) methods were used to characterize the microbiota from 32 native Cerrado fruits, and the selection of cellulase-producing bacteria was performed by a semi-quantitative test on carboxymethylcellulose agar medium. Analysis of the 16S rRNA gene sequences of 69 profile representatives showed that the isolates belonged to 29 bacterial genera (Arthrobacter, Bacillus, Paenibacillus, Pseudomonas, Serratia, Staphylococcus, Streptomyces, Enterobacter, Microbacterium, Aerococcus, Bradyrhizobium, Methylobacterium, Erwinia, Pantoea, Acidithiobacillus, Ochrobactrum, Stenotrophomonas, Curtobacterium, Clostridium, Lactobacillus, Xanthomonas, Delftia, Klebsiella, Enterococcus, Burkholderia, Escherichia, Streptococcus, Citrobacter and Achromobacter). Species in the genera Methylobacterium, Stenotrophomonas, Clostridium, Pantoea and Enterobacter were detected by both culture-dependent and culture-independent methods. The species Lactobacillus fermentum, Acinetobacter sp. and Methylomonas methanica were detected only by PCR-DGGE. Additionally, 30 % (178 isolates) of the bacteria tested were able to produce cellulase. The best producers belonged to the genera Bacillus, Streptomyces, Paenibacillus, Enterobacter and Burkholderia, indicating that this ecosystem could be an attractive source for the study of novel enzymes.  相似文献   

9.
Natural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from different Streptomyces species. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products in Streptomyces species. The production of red pigment by Streptomyces lividans TK23 was induced by coculture with Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances. T. pulmonis could induce natural-product synthesis in other Streptomyces strains too: it altered natural-product biosynthesis in 88.4% of the Streptomyces strains isolated from soil. The other mycolic acid-containing bacteria, Rhodococcus erythropolis and Corynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of the Streptomyces strains, respectively. The coculture broth of T. pulmonis and Streptomyces endus S-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism in Streptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria and Streptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products.  相似文献   

10.
Protein tyrosine phosphorylation in streptomycetes   总被引:1,自引:0,他引:1  
Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.  相似文献   

11.
Recombinant DNA techniques for manipulation of genes in Streptomyces are well developed, and currently there is a high level of activity among researchers interested in applying molecular cloning and protoplast fusion techniques to strain development within this commercially important group of bacteria. A number of efficient plasmid and phage vector systems are being used for the molecular cloning of genes, primarily those encoding antibiotic biosynthesis enzymes, but also for a variety of other bioactive proteins and enzymes of known or potential commercial value. In addition, cloning aimed at constructing specialized bioconversion strains for use in the production of chemicals from organic carbon substrates is underway in numerous laboratories. This review discusses the current status of research involving recombinant DNA technologies applied to biotechnological applications using Streptomyces. The topic of potential environmental uses of recombinant Streptomyces is also reviewed, as is the status of current research aimed at assessing the fate and effects of recombinant Streptomyces in the environment. Also summarized is recent research that has confirmed that genetic exchange occurs readily among Streptomyces in the soil environment and which has shown the potential for exchange between recombinant Streptomyces and native soil bacteria.  相似文献   

12.
13.
14.
The ability to convert D-glucose into D-fructose was found in 14 out of 74 species of actinomycetes and bacteria tested. High intracellular glucose isomerase activity was displayed by Arthrobacter sp. and actinomycetes Streptomyces viridobrunneus, Streptomyces sp. 1 and Streptomyces sp. 32. The first showed maximal glucose-converting potential when cultured in both glucose and xylose media, while glucose isomerase activity of Streptomyces species could be found solely in medium supplemented with xylose. The ketose enzymatically formed from D-glucose was identified as D-fructose.  相似文献   

15.
Use of mutagens in the improvement of production strains of microorganisms   总被引:1,自引:1,他引:0  
Thoma  R. W. 《Folia microbiologica》1971,16(3):197-204
Physical and chemical agents were employed in our laboratories to induce mutation in a variety of microorganisms used for production of antibioties or enzymes. Improved production strains ofPenicillium chrysogenum (penicillin-producer),Streptomyces griseus (streptomycin-producer),Streptomyces nodosus. (amphotericin B-producer),Streptomyces noursei (nystatin-producer),Streptomyces umbrinus (diumycin-producer),Streptomyces prasinus (prasinomycin-producer),Streptomyces roseochromogenes (steroid-16α-hydroxylase-producer), andArthrobacter simplex (steroid-1-dehydrogenase-producer) were developed by use of mutation selection techniques. The methods found to be most successful with each species are described. The genealogical relationships within species of a number of strains ofPenicillium chrysogenum, Streptomyces prasinus, andStreptomyces roseochromogenes are presented.  相似文献   

16.
Mercury volatilization (Hg2+ reductase) activity has been found with Hg2+-resistant isolates of three Streptomyces species and with three Hg2+-resistant strains of group B Streptococcus from clinical sources in Japan. Hg2+ reductase activities in crude cell extracts showed the temperature sensitivity, the requirement for an added thiol compound and the characteristic dependence on NAD(P)H cofactors of similar enzymes isolated from other bacteria.  相似文献   

17.
The ability to convert D-glucose into D-fructose was found in 14 out of 74 species of actinomycetes and bacteria tested. High intracellular glucose isomerase activity was displayed by Arthrobacter sp. and actinomycetes Streptomyces viridobrunneus, Streptomyces sp. 1 and Streptomyces sp. 32. The first showed maximal glucose-converting potential when cultured in both glucose and xylose media, while glucose isomerase activity of Streptomyces species could be found solely in medium supplemented with xylose. The ketose enzymatically formed from D-glucose was identified as D-fructose.  相似文献   

18.
Resistance of Zygorhynchus Species to Lysis   总被引:3,自引:1,他引:2       下载免费PDF全文
Zygorhynchus vuilleminii, a nonmelanin-containing fungus, was not lysed by mycolytic actinomycetes. Several enzymes and Streptomyces enzyme preparations digesting walls of other fungi were without appreciable activity on walls of Zygorhynchus species. A bacterium able to solubilize a portion of the Zygorhynchus wall released little or no reducing sugars from these structures. Fractions of Z. vuilleminii walls were resistant to glucanase hydrolysis, but certain fractions were digested by chitinase and microbial enzyme preparations. The walls and several wall fractions were not readily susceptible to degradation by a soil community. Walls of lysis-resistant Zygorhynchus species contained glucosamine, fucose, glucuronic acid, and galactose but little or no glucose. Resistant wall fractions were rich in uronic acid and fucose, whereas the readily degradable fractions contained abundant glucosamine. Cultural conditions affected the extent of digestion and composition of the walls. Possible reasons for the resistance of Zygorhynchus to lysis in nature are discussed.  相似文献   

19.
20.
Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号