共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glen A. Sargeant Duane C. Weber Daniel E. Roddy 《The Journal of wildlife management》2011,75(1):171-177
Emerging diseases and expanding carnivore populations may have profound implications for ungulate harvest management and population regulation. To better understand effects of chronic wasting disease (CWD) and cougar (Puma concolor) predation, we studied mortality and recruitment of elk (Cervus elaphus) at Wind Cave National Park (WICA) during 2005–2009. We marked 202 elk (83 subadult M and 119 subadult and ad F) with Global Positioning System (GPS) collars, observed 28 deaths during 74,220 days of monitoring, and investigated 42 additional deaths of unmarked elk found dead. Survival rates were similar for males and females and averaged 0.863 (SE = 0.025) annually. Leading causes of mortality included hunting (0.065, SE = 0.019), CWD (0.034, SE = 0.012), and cougar predation (0.029, SE = 0.012). Marked elk killed by hunters and cougars typically were in good physical condition and not infected with CWD. Effects of mortality on population growth were exacerbated by low rates of pregnancy (subadults = 9.5%, SE = 6.6%; ad = 76.9%, SE = 4.2%) and perinatal survival (0.49, SE = 0.085 from 1 Feb to 1 Sep). Chronic wasting disease, increased predation, and reduced recruitment reduced the rate of increase for elk at WICA to approximately λ = 1.00 (SE = 0.027) during the past decade. Lower rates of increase are mitigating effects of elk on park vegetation, other wildlife, and neighboring lands and will facilitate population control, but may reduce opportunities for elk hunting outside the park. © 2011 The Wildlife Society 相似文献
4.
5.
6.
Dave Onorato Rich Desimone Craig White Lisette P. Waits 《The Journal of wildlife management》2011,75(2):378-384
Understanding the social dynamics of large carnivores is critical to effective conservation and management planning. We made the first attempt to delineate both paternity and relatedness for a population of cougar (Puma concolor) using microsatellite data. We analyzed a long-term genetic dataset collected from a hunted population in the Garnet Mountains of western Montana. We assigned paternity for 62.5% of litters sampled using both exclusion and likelihood analyses. Attempts at reconstructing unsampled paternal genotypes resulted in delineating possible sires for 8 more litters. Sires were on average younger than reported for males involved in pairings assessed via field data in other cougar populations. Although most mating pairs were unrelated, 5 of 17 pairings involved cougars with levels of relatedness corresponding to half-sibling and full-sibling or parent offspring relationship (r = 0.215–0.575). Relatedness among adult and subadult males was higher than relatedness levels among adult and subadult females. Relatedness among males in the Garnet population differed from patterns hypothesized to occur under male-biased dispersal theories for cougars. The long-term impact of the turnover of resident cougars in hunted populations is still unclear and warrants additional research. Our results highlight the utility of monitoring cougar demographic parameters using a combination of genetic and field data that in turn may assist managers with determining cougar harvest quotas or strategies, harvest seasons, sustainable harvest, and the appropriate management level of cougar populations. © 2011 The Wildlife Society. 相似文献
7.
8.
EDWARD F. CONNOR ROBERT H. ADAMS-MANSON TIMOTHY G. CARR† MICHAEL W. BECK‡ 《Ecological Entomology》1994,19(2):111-120
Abstract.
- 1 We examined the effects of variation in the timing of spring leaf production and autumn leaf fall on the survival, mortality and abundance of Cameraria hamadryadella on Quercus alba and Q.macrocarpa.
- 2 We monitored and manipulated the timing of foliation on field and potted Q.alba trees and observed the abundance of C.hamadryadella on those trees. We also monitored and manipulated the timing of leaf fall on Q.alba and Q.macrocarpa trees in the field and observed its effects on survival, mortality and abundance of C.hamadryadella.
- 3 Variation in the timing of spring leaf production has no effect on C. hamudryadella abundance. However, a warm winter and spring in 1991 led to accelerated development and the imposition of a facultative third generation in one out of ten years of observation.
- 4 In 1989, leaves fell relatively early and leaf fall in the autumn accounted for more than 50% of the mortality of C.hamudryadella. in 1990 and 1991 leaves fell relatively late and leaf fall induced mortality was substantially reduced and overwinter survival was markedly increased.
- 5 The abundance of C.hamadryadella remained constant in the spring and summer of 1990 following the previous autumn's relatively early leaf fall, but increased by 10-fold in the spring of 1991 following the relatively late leaf fall of autumn 1990. The abundance of C.hamadryadella also increased 4-fold between the summer of 1991 and the spring of 1992 after another autumn of relatively late leaf fall. We attribute these increases in abundance in part to reduced mortality because of later leaf fall.
- 6 Variation in the timing of autumn leaf fall may be responsible for initiating outbreaks of C.hamadryadella.
9.
Using long‐term mark–resighting data acquired over 27 years in continental France, we estimated demographic parameters and modelled the dynamics of a newly established population of Ospreys Pandion haliaetus using a life‐history model. We then performed prospective and retrospective analyses to estimate the sensitivity of the population growth rate to demographic parameters, and to quantify their contribution to the observed variation in abundance. The observed population growth rate was estimated at 1.150 (from one to 38 pairs in the period 1985–2011), and the stochastic population growth rate was estimated at 1.156. The number of fledglings per nest made the largest contribution to the variance of the observed population growth rate. Breeding productivity was stable across years. In contrast, the prospective analysis indicated that the sensitivity of the population growth rate was greatest for immigration and adult survival. Our results suggest that the increase of a new and recently established breeding population of Ospreys was mainly driven by local dynamics (high productivity and high proportion of breeding individuals), with no sign of density‐dependence except for juvenile survival. This probably reflects highly favourable conditions for breeding. Our results show that productivity can be a major driver in recovering raptor populations, and conservation work should aim to protect occupied nest‐sites and their surrounding habitat and to maintain highly favourable foraging areas in the vicinity of breeding sites. 相似文献
10.
11.
The identification of the source–sink status of a population is critical for the establishment of conservation plans and enacting smart management decisions. We developed an integrated population model to formally assess the source status of a kestrel Falco tinnunculus population breeding in nest boxes in Switzerland. We estimated juvenile and adult survival, reproduction and net dispersal (emigration/immigration) by jointly analyzing capture–recapture, dead recovery, breeding monitoring and population survey data. We also investigated the role of nest boxes on kestrel demography and assessed the contributions of vital rates to realized population growth rates. The results indicate that the kestrel population breeding in nest boxes has acted as a source over the 15 years of the study duration. A quantitative approach suggests that a substantial number of individuals have emigrated annually from this population likely affecting the population dynamics outside the management area. Variation in fecundity explained 34% of the temporal variability of the population growth rate. Moreover, a literature review suggests that kestrel pairs produce on average 1.4 chicks more per breeding attempt in nest boxes compared to natural open nests. Together, these findings suggest that fecundity was an important driver for the dynamics of this population and that nest boxes have contributed to its raise. Nest boxes are regularly used as an efficient tool for conservation management. We suggest that such a conservation action can result in the establishment of a source population being beneficial for populations both inside and outside the managed area. 相似文献
12.
Michelle L. McLellan Bruce N. McLellan Rahel Sollmann Heiko U. Wittmer 《Ecology and evolution》2021,11(7):3422
Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population‐specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96–1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62–0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64–0.93) and first‐year cub survival was 0.33 (95% CI: 0.11–0.67). Reproductive rates did not differ between populations. The large differences in age‐specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04–1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72–0.95). Low female survival in the smaller population was the result of both continued human‐caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging. 相似文献
13.
14.
15.
生命表是种群生态学与害虫治理的重要工具,由于传统雌性生命表无法正确描述昆虫的变态且忽略雄性个体,近年来国内外学者普遍采用年龄-龄期两性生命表。本文首先从昆虫种群的龄期分化、性比对种群增长的影响、总产卵前期与成虫产卵前期的差异、产卵期与产卵日数的差异4个方面概述了年龄-龄期两性生命表(age-stage, two-sex life table)的基本原理,进而阐明了基于bootstrap技术的生命表分析技术及其主要优点,然后介绍了年龄-龄期两性生命表各软件(TWOSEX-MSChart, CONSUME-MSChart, TIMING-MSChart)的主要用途,即预测种群的增长与防治适期、正确分析天敌的捕食率与害虫的取食量、预测天敌的种群增长与捕食潜能以及指导天敌的大量繁育。昆虫生命表作为一种强有力的分析技术,不仅在研究种群生态学和害虫治理方面已有广泛的应用,展望未来,这项技术还可以用于昆虫生理、抗药性、亚致死剂量、共生菌等方面的研究。 相似文献
16.
Eric C. Lofroth Richard D. Weir Larry R. Davis Ingebjorg Jean Hansen 《The Journal of wildlife management》2023,87(1):e22315
Fishers (Pekania pennanti) are a forest-dependent carnivore of conservation concern in British Columbia, Canada. Ecological, spatial, and genetic evidence suggests that there are 2 distinct populations (Boreal and Columbian) that occur in forests at low to moderate elevations in the boreal and central interior regions of the province. In British Columbia, fishers occur at low densities relative to other parts of their range in North America, are trapped for their fur, and are sensitive to habitat change. Despite these factors, little demographic information exists to assist with management decisions for these populations. We collated and analyzed survival and reproductive data from 100 radio-tagged fishers from 5 independent studies conducted between 1990 and 2012 in British Columbia: 2 in the Boreal population, and 3 in the Columbian population. We also collated litter size data from 1 den box study and a translocation project of fishers from the Columbian population. Annual survival rates were not significantly different between the populations or between males and females; however, adult survival rates were higher than subadults (0.79 and 0.63, respectively). Subadult females had significantly lower survival rates than other sex or age classes. Reproductive rates were significantly different between the 2 populations (denning rate = 0.54 [Columbian], 0.82 [Boreal]; litter size = 1.7 [Columbian], 2.6 [Boreal]). These differences resulted in net reproductive rates in the Columbian population that were less than half of those in the Boreal population (0.92 kits/reproductive season compared to 2.13, respectively). Population growth rates suggest that the Columbian population may have been declining during the studies, whereas the Boreal population may have been increasing (0.96 compared to 1.20). Consequently, we suggest that focused and intensive habitat and population management for fishers are needed in British Columbia to ensure population sustainability, particularly for the Columbian population. 相似文献
17.
Mnica Arso Civil Barbara Cheney Nicola J. Quick Valentina Islas‐Villanueva Jeff A. Graves Vincent M. Janik Paul M. Thompson Philip S. Hammond 《Ecology and evolution》2019,9(1):533-544
Understanding the drivers underlying fluctuations in the size of animal populations is central to ecology, conservation biology, and wildlife management. Reliable estimates of survival probabilities are key to population viability assessments, and patterns of variation in survival can help inferring the causal factors behind detected changes in population size. We investigated whether variation in age‐ and sex‐specific survival probabilities could help explain the increasing trend in population size detected in a small, discrete population of bottlenose dolphins Tursiops truncatus off the east coast of Scotland. To estimate annual survival probabilities, we applied capture–recapture models to photoidentification data collected from 1989 to 2015. We used robust design models accounting for temporary emigration to estimate juvenile and adult survival, multistate models to estimate sex‐specific survival, and age models to estimate calf survival. We found strong support for an increase in juvenile/adult annual survival from 93.1% to 96.0% over the study period, most likely caused by a change in juvenile survival. Examination of sex‐specific variation showed weaker support for this trend being a result of increasing female survival, which was overall higher than for males and animals of unknown sex. Calf survival was lower in the first than second year; a bias in estimating third‐year survival will likely exist in similar studies. There was some support first‐born calf survival being lower than for calves born subsequently. Coastal marine mammal populations are subject to the impacts of environmental change, increasing anthropogenic disturbance and the effects of management measures. Survival estimates are essential to improve our understanding of population dynamics and help predict how future pressures may impact populations, but obtaining robust information on the life history of long‐lived species is challenging. Our study illustrates how knowledge of survival can be increased by applying a robust analytical framework to photoidentification data. 相似文献
18.
Bradley Udell Julien Martin Christina Romagosa Hardin Waddle Fred Johnson Bryan Falk Amy Yackel Adams Sarah Funck Jennifer Ketterlin Eric Suarez Frank Mazzotti 《Ecology and evolution》2022,12(8)
Removal sampling data are the primary source of monitoring information for many populations (e.g., invasive species, fisheries). Population dynamics, temporary emigration, and imperfect detection are common sources of variation in monitoring data and are key parameters for informing management. We developed two open robust‐design removal models for simultaneously modeling population dynamics, temporary emigration, and imperfect detection: a random walk linear trend model (estimable without ancillary information), and a 2‐age class informed population model (InfoPM, closely related to integrated population models) that incorporated prior information for age‐structured vital rates and relative juvenile availability. We applied both models to multiyear, removal trapping time‐series of a large invasive lizard (Argentine black and white tegu, Salvator merianae) in three management areas of South Florida to evaluate the effectiveness of management programs. Although estimates of the two models were similar, the InfoPMs generally returned more precise estimates, partitioned dynamics into births, deaths, net migration, and provided a decision support tool to predict population dynamics under different effort scenarios while accounting for uncertainty. Trends in tegu superpopulation abundance estimates were increasing in two management areas despite generally high removal rates. However, tegu abundance appeared to decline in the Core management area, where trapping density was the highest and immigration the lowest. Finally, comparing abundance predictions of no‐removal scenarios to those estimated in each management area suggested significant population reductions due to management. These results suggest that local tegu population control via systematic trapping may be feasible with high enough trap density and limited immigration; and highlights the value of these trapping programs. We provided the first estimates of tegu abundance, capture probabilities, and population dynamics, which is critical for effective management. Furthermore, our models are applicable to a wide range of monitoring programs (e.g., carcass recovery or removal point‐counts). 相似文献
19.