首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to determine whether acute expansion of the extracellular fluid volume influenced the digitalis-like activity of human cerebrospinal fluid (CSF), previously described by our laboratory. Human CSF samples, drawn before and 30 minutes after the intravenous infusion of 1 liter of either saline or glucose solutions, were assayed for digitalis-like activity by inhibition of either the 86Rb+ uptake into human erythrocytes or by the activity of a purified Na+ - K+ ATPase. The CSF inhibitory activity on both systems significantly increased after the infusion of sodium solutions but did not change after the infusion of glucose. These results indicate that the digitalis-like factor of human CSF might be involved in the regulation of the extracellular fluid volume and electrolyte content and thereby in some of the physiological responses to sodium loading.  相似文献   

2.
The effect of semisynthetic human insulin on hepatic glucose output, peripheral glucose clearance, plasma levels of C-Peptide, free fatty acids and amino acids was compared with purified pork insulin using the glucose clamp technique. 8 normal overnight-fasted subjects received intravenous infusions of either human or porcine insulin at 20 mU/m2.min(-1) during 120 min achieving plasma insulin levels of approximately equal to 50 mU/l. Plasma glucose levels were maintained at euglycaemia by variable rates of glucose infusion. Hepatic glucose production measured by continuous infusion of 3-(3) H-glucose was similarly suppressed by both insulins to rates near zero. The metabolic clearance rate of glucose increased during infusion of human insulin by 120%, C-peptide levels decreased by 41% and plasma FFA concentrations fell by 74%. The respective changes during infusion of pork insulin were similar, 118%, 48% and 72%. Both insulins decreased the plasma levels of branched-chain amino acids, tyrosine, phenylalanine, methionine, serine and histidine similarly. Thus, the results demonstrate that semisynthetic human and porcine insulin are aequipotent with respect to suppression of hepatic glucose output, stimulation of glucose clearance, inhibition of insulin secretion, lipolysis and proteolysis.  相似文献   

3.
The effects of constant osmolarity, between 300 and500 mOsm/kg, on the metabolism of Chinese HamsterOvary (CHO) cells producing tissue plasminogenactivator (tPA) were compared between adhesion andsuspension cultures. In both suspension and adhesionculture, the specific rates of glucose consumption(G), lactate production (qL), and tPAproduction (qtPA) increased as osmolarityincreased, while these rates decreased when osmolaritywas higher than the respective critical levels. However, specific growth rate () decreased withincrease in osmolarity and this slope grew steeper inthe osmolarity range higher than the critical level. The decrease in in the adhesion culture was morerapid than that in the suspension culture. Thecritical osmolarity for adhesion culture (400 mOsm/kg)was lower than that for suspension culture (450 mOsm/kg). These results indicated that the adhesionculture was more sensitive to increase of osmolaritythan the suspension culture, while the specific ratesobtained from the adhesion cultures were in general1.5- to 3-fold higher than those obtained from thesuspension cultures. Cell volume increased asosmolarity increased in both the suspension andadhesion cultures, as reported previously forsuspension culture of hybridoma cells, but there wasno morphological change in the suspension culture. Incontrast, cell height decreased and cell adhesion areamarkedly increased as osmolarity increased in theadhesion culture. This morphological change inadhesion cultures may be one reason for the highersensitivity of adherent cells to the increase ofosmolarity than suspended cells.  相似文献   

4.
The human adenovirus/293S cell expression system is used for the production of either recombinant protein or adenovirus vectors for use in gene therapy. In this work, the production of protein tyrosine phosphatase (PTP1C) was used as a model for the scale-up of both applications. Maximum specific production of 30 to 45 mug of active protein/10(6) cells was maintained upon infection with adenovirus vectors at cell densities between 2 x 10(6) to 3 x 10(6) cells/mL in a 3.5-L bioreactor. This was achieved by resuspending the culture in fresh medium at infection time. The pH was kept at 7.0 throughout the experiment and, at 24 h postinfection, glucose and essential amino acids were added. Attempts to replace the complete change of medium at the time of infection with nutrient supplementation of the used medium led to lower production levels, suggesting that protein expression was limited not by the absence of a key nutrient but by inhibitory factors. Two potentially inhibitory factors were investigated: lactic acid accumulation and increased osmolarity. Medium acidification such as that which would be brought about by lactic acid accumulation was shown to depress PTP1C production. The lactate molecule itself decreased the cell viability when added in concentrations of 20 mM or more. But the specific productivity was affected at higher lactate concentrations of 40 mM or more. Additions of glucose, amino acids, and NaHCO(3) used to control pH, led to increases in osmolarity. Osmolarities above 400 mOsm lowered cell density. However, specific production was not significantly affected below 500 mOsm. But, at 500 mOsm, PTP1C production peak was shifted from 48 to 72 hpi. Because of the cell loss, this per cell yield increase did not translate into higher volumetric production. When glucose concentrations was kept at 5 mM by fed-batch addition, lactate production and increases in osmolarity were reduced. In shake flasks, this method permitted maximum production with cells resuspended either in fresh or spent medium at infection. This fed-batch process was implemented successfully at the 3.5-L scale. Fed-batch with glucose may provide a means to increase infected-cell density beyond 3 x 10(6) cells/mL.  相似文献   

5.
GNbAC1 is a humanized IgG4 monoclonal antibody antagonist of Mulitple Sclerosis Retrovirus Envelope (MSRV-Env), a protein that could play a critical role in multiple sclerosis. This randomized placebo-controlled dose-escalation study evaluated the safety and pharmacokinetics of GNbAC1 in 21 healthy volunteers after single intravenous infusion at doses of 6, 18 and 36 mg/kg. Lumbar punctures were performed at days 2, 15 or 29 to measure GNbAC1 concentrations in cerebrospinal fluid (CSF). GNbAC1 was well tolerated. Serum data show a dose-linear pharmacokinetics. A mean CSF/serum ratio of 0.12% was observed at Day 2, increasing to 0.39% at Day 15 and 0.42% at Day 29. Linear regression analysis shows a relationship between GNbAC1 CSF/serum ratio and albumin CSF/serum ratio and a relationship at the limit of statistical significance with the timing of CSF sampling.  相似文献   

6.
The turnover of cerebrospinal fluid (CSF) glucose was studied in cats during steady-state perfusion. In all experiments, the perfusion fluid contained either tracer [14C]glucose alone or tracer glucose along with 4.45 mM unlabeled glucose. In some studies, serum glucose was lowered with insulin. The concentration of glucose and [14C]glucose in the effluent fluid was measured, and the distribution of 14C between glucose and lactate was determined by chromatography. From these values, the extraction of glucose and the metabolism of glucose to lactate were calculated. From the decrease in the specific activity of glucose in the perfusion fluid, the influx of glucose from serum was also determined. During steadystate perfusion, 71% of the radioactivity was recovered in the effluent fluid: 50% in the form of glucose, 6% in the form of lactate, and 15% in forms that were not identified. Thus, 50% of the perfusion fluid glucose was cleared, of which 29% was extracted and 21% metabolized. The influx of glucose was proportional to the serum glucose when the latter was about 2.5 mM or 10.0 mM. During perfusion with tracer glucose only, the concentration of glucose in the effluent fluid was 25% that of serum. The transport of glucose from serum was independent of the glucose concentration gradient between serum and perfusion fluid. However, when perfusion fluid glucose concentration was greater than that of serum, transport was inhibited. These studies suggest that in maintaining CSF glucose at a lower concentration than serum glucose, with equal amounts of glucose entering and leaving the CSF, 50% of CSF glucose concentration cleared is replaced by 25% of serum glucose concentration.  相似文献   

7.
We studied 35 patients with chronic meningitis. The neurological abnormalities included aseptic meningitis, cranial neuropathy (mostly facial palsy), motor and sensory peripheral radiculoneuropathy, and myelitis. Neurological symptoms were sometimes preceded by erythema chronicum migrans or an insect bite and were often accompanied by fever, malaise, profound fatigue, and weight loss. The cerebrospinal fluid (CSF) abnormalities consisted of a predominantly mononuclear pleocytosis, an elevated CSF protein (mean 2.3 g/l), intrathecal synthesis of oligoclonal immunoglobulin G, and, in half of the patients, a fall in the CSF/blood glucose ratio. High antibody titers to the Lyme spirochete and the Swedish Ixodes ricinus spirochete were demonstrated by immunofluorescence in 26 of the 35 patients. By imprint immunofixation of electrofocused samples of serum and CSF, intrathecal production of oligoclonal Lyme-spirochete-specific IgG was demonstrated in one patient with chronic meningitis. Four sequential paired samples of serum and CSF from this patient showed local synthesis of spirochete-specific antibodies in CSF. The 35 patients improved or recovered, sometimes dramatically, during a two-week course of intravenous penicillin G.  相似文献   

8.
Glucagon-like peptide-2 (GLP-2) increases small intestinal mass and blood flow in ruminant calves, but its impact on nutrient metabolism across the portal-drained viscera (PDV) and liver is unknown. Eight Holstein calves with catheters in the carotid artery, mesenteric vein, portal vein and hepatic vein were paired by age and randomly assigned to control (0.5% bovine serum albumin in saline; n = 4) or GLP-2 (100 μg/kg BW per day bovine GLP-2 in bovine serum albumin; n = 4). Treatments were administered subcutaneously every 12 h for 10 days. Blood flow was measured on days 0 and 10 and included 3 periods: baseline (saline infusion), treatment (infusion of bovine serum albumin or 3.76 μg/kg BW per h GLP-2) and recovery (saline infusion). Arterial concentrations and net PDV, hepatic and total splanchnic fluxes of glucose, lactate, glutamate, glutamine, β-hydroxybutyrate and urea-N were measured on days 0 and 10. Arterial concentrations and net fluxes of all amino acids and glucose metabolism using continuous intravenous infusion of [U13-C]glucose were measured on day 10 only. A 1-h infusion of GLP-2 increased blood flow in the portal and hepatic veins when administered to calves not previously exposed to exogenous GLP-2, but after a 10-day administration of GLP-2 the blood flow response to the 1-h GLP-2 infusion was substantially attenuated. The 1-h GLP-2 infusion also did not appreciably alter nutrient fluxes on either day 0 or 10. In contrast, long-term GLP-2 administration reduced arterial concentrations and net PDV flux of many essential and non-essential amino acids. Despite the significant alterations in amino acid metabolism, glucose irreversible loss and utilization by PDV and non-PDV tissues were not affected by GLP-2. Fluxes of amino acids across the PDV were generally reduced by GLP-2, potentially by increased small intestinal epithelial growth and thus energy and amino acid requirements of this tissue. Increased PDV extraction of glutamine and alterations in PDV metabolism of arginine, ornithine and citrulline support the concept that GLP-2 influences intestine-specific amino acid metabolism. Alterations in amino acid metabolism but unchanged glucose metabolism suggests that the growth effects induced by GLP-2 in ruminants increase reliance on amino acids preferentially over glucose. Thus, GLP-2 increases PDV utilization of amino acids, but not glucose, concurrent with stimulated growth of the small intestinal epithelium in post-absorptive ruminant calves.  相似文献   

9.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

10.
Contribution of propionate to glucose synthesis in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [(14)C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-(14)C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-(14)C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [(14)C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-(14)C]-, [2-(14)C]-, [3-(14)C]- and [U-(14)C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (+/-s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0.33+/-0.03 (4) m-mole/min. and by using a primed infusion was 0.32+/-0.01 (4) m-mole/min. The mean propionate production rate was 1.24+/-0.03 (8) m-moles/min. The conversion of propionate into glucose was 0.36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate.  相似文献   

11.
Islet damage from glucose toxicity is implicated in the pathogenesis of type 2 diabetes, but the sequence of events leading to islet cell dysfunction and hyperglycemia remains unclear. To examine the early stages of islet pathology resulting from increased basal glucose loads, normal awake rats were infused with glucose continuously for 10 days. Plasma glucose and markers of islet and liver function were monitored throughout the infusion. After initial hyperglycemia, rats adapted to the infusion and maintained euglycemia for approximately 4 days. Continued infusion led to worsening hyperglycemia in just 5% of rats after 6 days, but 69% after 8 days and 89% after 10 days, despite unchanged basal and stimulated plasma insulin and C-peptide concentrations. In contrast, plasma glucagon concentrations increased fivefold. Endogenous glucose production (EGP) was appropriately suppressed after 4 days (2.8 ± 0.7 vs. 6.1 ± 0.4 mg·kg(-1)·min(-1) on day 0, P < 0.001) but tripled between days 4 and 8 (9.9 ± 1.7 mg·kg(-1)·min(-1), P < 0.01). Surprisingly, the increase in EGP was accompanied by increased mitochondrial phosphoenolpyruvate carboxykinase expression with appropriate suppression of the cytosolic isoform. Infusion of anti-glucagon antibodies normalized plasma glucose to levels identical to those on day 4 and ~300 mg/dl lower than controls. This improved glycemia was associated with a 60% reduction in EGP. These data support the novel concept that glucose toxicity may first manifest as α-cell dysfunction prior to any measurable deficit in insulin secretion. Such hyperglucagonemia could lead to excessive glucose production overwhelming the capacity of the β-cell to maintain glucose homeostasis.  相似文献   

12.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

13.
The development of the chloride ion, glucose and total protein concentration was investigated in the cerebrospinal fluid of 11- to 21-day-old chick embryos and compared with their development in the blood plasma. Developmental changes in the chloride concentration in the plasma and CSF were very small, but it was always higher in the CSF than in the plasma. The plasma/CSF ratio fell during development, from 0.906 in 11-day-old embryos to 0.778 at the end of incubation. The CSF glucose concentration fell up to the 19th day of incubation, but a significant increase was recorded shortly before hatching. The plasma glucose concentration rose throughout the whole of the investigated period of embryogenesis. Up to the 19th day the P/CSF ratio rose from 1.59 to 4.05 and in 21-day-old embryos fell to 2.47. The developmental increase in the plasma total protein concentration was accompanied by the reverse process in the CSF. During the second half of incubation the P/CSF ratio rose from 1.88 to 7.9 Calculation of total osmolarity from the Na+, K+, Ca2+, Cl- and glucose concentration showed permanent hyperosmolarity of the CSF compared with the plasma. The P/CSF ratio was maintained within limits of 0.94 to 0.98.  相似文献   

14.
Tumor promoting phorbol esters, such as 12-0-tetradecanoyl-phorbol-13-acetate (TPA), stimulate colony formation in vitro by murine granulocyte-macrophage progenitors (GM-CFC) without added colony stimulating factors (CSF). To determine whether TPA induces CSF production in vitro, marrow cells were cultured for 1 to 7 days in liquid medium with or without TPA. No CSF was detected in any sample by a double antibody radioimmunoassay (sensitivity = 2 units/0.1 ml), however, colony-stimulating activity was detected in supernatant fluid from all TPA containing cultures by bioassay. This activity appeared to result from a direct effect of TPA rather than from production of CSF, as equivalent activity was found in TPA-containing medium incubated in the absence of marrow cells. Rabbit antiserum to purified L-cell CSF inhibited colony formation stimulated by L-cell CSF and WEHI-3 CSF, but had no effect on colony formation induced by TPA. Cells from long-term marrow cultures responded to TPA with colony formation, despite culture conditions and cell fractionation procedures that reduced the frequency of CSF-producing macrophages to less than 1.0%. TPA inhibited binding of radioiodinated L-cell CSF to marrow cells, especially if the cells were first exposed to TPA. These results do not support induction of CSF production as the major mechanism of phorbol ester stimulation of myelopoiesis. Phorbol esters may directly stimulate GM-CFC and/or enhance their response to CSF by a mechanism involving CSF binding sites.  相似文献   

15.
Cat semen was diluted at 37 degrees C in Tes-Tris buffer (TesT), pH 7.5, at osmolalities ranging from 195 to 390 m0sm/kg, cooled to 5 degrees C over 90 minutes and stored for 24 hours at that temperature. Motility and percentage of spermatozoa staining with a supravital stain were estimated before cooling, after cooling and after storage for 24 hours. The osmolality of undiluted pooled ejaculates from five animals was measured, and also that of different diluents (citrate with phosphate buffer, lactose and TesT-egg yolk) used for cat semen. The osmolality measurements of cat semen suggested an osmolality of less than 320 m0sm/kg at ejaculation, increasing with time after ejaculation. Varying the egg yolk concentrations (2% to 20%) did not affect the osmolality of TesT diluent. Diluent osmolalities of less than 292 m0sm/kg were found to reduce sperm motility significantly (P <0.001 ) although there was no significant increase in the percentage of cells staining with a supravital stain, while those greater than 325 m0sm/kg increased the variation of response among animals. Cooling and storage significantly reduced motility (P <0.01 to P <0.001 ) and increased the number of stained cells (P <0.001 ). There were significant differences between ejaculates (P <0.01 ) and significant interactions between osmolality and cooling/storage (P <0.05 to P <0.001 ). The best overall results were seen with a TesT diluent of 292 to 325 m0sm/kg which supported good motility for at least 24 hours.  相似文献   

16.
This twelve-week, European, multicenter, controlled, open-label, randomized (1 : 1), parallel-group trial compared the safety of insulin glulisine with insulin as part used in continuous subcutaneous insulin infusion. Patients with type 1 diabetes (n=59) and continuous subcutaneous insulin infusion experience (mean values: HbA1c 6.9 % [insulin glulisine: 6.8 % VS. insulin as part: 7.1 %]; age 45.8 years; body mass index 26.0 kg/m2) were enrolled. HbA1c levels at endpoint (insulin glulisine: 7.0 % VS. insulin as part: 7.2 %), daily insulin doses, blood glucose profiles and adverse event rates were similar in both groups. The median (minimum-maximum) catheter occlusion rate was low for insulin glulisine and insulin as part (0 [0 - 0.7] VS. 0 [0 - 1.1] occlusions/month. Unexplained hyperglycemia occurred in six insulin glulisine-treated patients and twelve insulin as part-treated patients. Patients were expected to change their catheters every 2 days (15 changes/month); the catheter change rate was similar for insulin glulisine and insulin as part (14.1 VS. 14.8 changes/month). The frequency of infusion site reactions and hypoglycemia, and the time between catheter changes were similar for both insulin forms. Diabetic ketoacidosis was not reported. This study supports the safety of insulin glulisine in continuous subcutaneous insulin infusion administered via an external pump in type 1 diabetes.  相似文献   

17.
It has been suggested that (abdominally) obese individuals are hypersensitive to growth hormone (GH) action. Because GH affects glucose metabolism, this may impact glucose homeostasis in abdominal obesity. Therefore, we studied the effect of GH on glucose metabolism in abdominally obese (OB) and normal-weight (NW) premenopausal women. A 1-h intravenous infusion of GH or placebo was randomly administered to six NW [body mass index (BMI) 21.1 +/- 1.9 kg/m(2)] and six OB (BMI 35.5 +/- 1.5 kg/m(2)) women in a crossover design. Insulin, glucagon, and GH secretion were suppressed by concomitant infusion of somatostatin. Glucose kinetics were measured using a 10-h infusion of [6,6-(2)H(2)]glucose. In both groups, similar physiological GH peaks were reached by infusion of GH. GH strongly stimulated endogenous glucose production (EGP) in both groups. The percent increase was significantly greater in OB than in NW women (29.8 +/- 11.3 vs. 13.3 +/- 7.4%, P = 0.014). Accordingly, GH responsiveness, defined as the maximum response of EGP per unit GH, was increased in OB vs. NW subjects (6.0 +/- 2.1 vs. 2.2 +/- 1.5 micromol.min(-1).mU(-1).l(-1), P = 0.006). These results suggest that the liver is hyperresponsive to GH action in abdominally obese women. The role of the somatotropic ensemble in the control of glucose homeostasis in abdominal obesity is discussed.  相似文献   

18.
D. C. Morley  Jr  P. R. Galbraith 《CMAJ》1978,118(3):288-290
Lithium carbonate therapy is associated with polymorphonuclear leukocytosis. In vitro studies have shown that lithium ions stimulate formation of granulocytic colonies. In a study undertaken to determine how lithium acts, colony-forming cells uncontaminated by monocytes (which elaborate colony-stimulating factor [CSF] in vitro) were obtained by means of a two-step cell separation procedure. The effects of lithium on colony formation were then studied in (a) cultures stimulated by humoral CSF, (b) cultures in which monocytes were relied upon to synthesize CSF de novo and (c) unstimulated cultures. Lithium enhanced the action of CSF but did not stimulate colony formation in the absence of CSF. In monocyte-stimulated cultures, colony formation increased with lithium concentrations up to 1 mmol/L but this increase paralleled that in CSF-stimulated cultures and therefore was not due to increased CSF production by monocytes. At higher concentrations of lithium, colony formation decreased in the monocyte-stimulated cultures but increased in the CSF-stimulated cultures. A lithium concentration of 4 mmol/L gave the greatest enhancing effect on colony formation in CSF-stimulated cultures and a concentration greater than 1 mmol/L inhibited de novo synthesis of CSF by monocytes.  相似文献   

19.
In-situ dc electric fields were applied to remove ammonium and lactate from suspension hybridoma cultures (ATCC-CRL-1606) which used enriched media. Nutrient concentration was increased fourfold above the normal concentration of DMEM to study enhanced protein product formation in a dc electric field. In the presence of the electric field, hybridoma growth and antibody production were increased 1.5-fold (from 3.7 x 10(6) to 9.1 x 10(6) viable cells/mL) and twofold (from 170 to 505 mg IgG/L), respectively, compared with the control. The effective removal of ammonium and lactate and increased concentrations of the various nutrients accounted for this enhancement. The enriched media caused the overflow metabolism of glucose, glutamine, and various essential amino acids. The overconsumption of glucose also produced substantial amounts of lactate, which in turn greatly increased the medium osmolarity. The increase in medium osmolarity is believed to be one of the causes of cell death in these culture systems.(c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Dogs with indwelling catheters in the jugular vein and in the carotid artery ran on the treadmill (slope: 15%, speed: 133 m/min). Lactate turnover and glucose turnover were measured using [U-14C]lactate and [3-3H]glucose as tracers, according to the primed constant-rate infusion method. In addition, the participation of plasma glucose in lactate production (Ra-L) was measured with [U-14C]glucose. Propranolol was given either (A) before exercise (250 micrograms/kg, iv) or (B) in form of a primed infusion administered to the dog running at a steady rate. Measurements of plasma propranolol concentration showed that in type A experiments plasma propranolol fell in 45 min below the lower limit of the complete beta-blockade. In the first 15 min of work Ra-L rose rapidly; then it fell below that of the control (exercise) values. During steady exercise, the elevated Ra-L was decreased by propranolol infusion close to resting values. beta-Blockade doubled the response of glucose production, utilization, and metabolic clearance rate to exercise. In exercising dogs approximately 40-50% of Ra-L arises from plasma glucose. This value was increased by the blockade to 85-90%. It is concluded that glycogenolysis in the working muscle has a dual control: 1) an intracellular control operating at the beginning of exercise, and 2) a hormonal control involving epinephrine and the beta-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号