共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis plays a major role in vertebrate and invertebrate development. The adult Drosophila thoracic microchaete is a mechanosensory organ whose development has been extensively studied as a model of how cell division and cell determination intermingle. This sensory organ arises from a cell lineage that produces a glial cell and four other cells that form the organ. In this study, using an in vivo approach as well as fixed material, we show that the glial cell undergoes nucleus fragmentation shortly after birth. Fragmentation was blocked after overexpression of the caspase inhibitor p35 or removal of the pro-apoptotic genes reaper, hid and grim, showing that the glial cell undergoes apoptosis. Moreover, it seems that fragments are eliminated from the epithelium by mobile macrophages. Forcing survival of the glial cells induces precocious axonal outgrowth but does not affect final axonal patterning and connectivity. However, under these conditions, glial cells do not fragment but leave the epithelium by a mechanism that is reminiscent of cell competition. Finally, we present evidences showing that glial cells are committed to apoptosis independently of gcm and prospero expression. We suggest that apoptosis is triggered by a cell autonomous mechanism. 相似文献
2.
We have used different cell markers to trace the development of the sensory cells of the thoracic microchaete. Our results dictate a revision in the currently accepted model for cell lineage within the mechanosensory bristle. The sensory organ progenitor divides to form two secondary progenitors: PIIa and PIIb. PIIb divides first to give rise to a tertiary progenitor-PIII and a glial cell. This is followed by division of PIIa to form the shaft and socket cells as described before. PIII expresses high levels of Elav and low levels of Prospero and divides to produce neuron and sheath. Its sibling cell expresses low Elav and high Prospero and is recognized by the glial marker, Repo. This cell migrates away from the other cells of the lineage following differentiation. The proposed modification in lineage has important implications for previous studies on sibling cell fate choice and cell fate specification in sensory systems. 相似文献
3.
Julie N. Wu Nguyen Nguyen Maral Aghazarian Ying Tan Evgueni A. Sevrioukov Megumu Mabuchi Wei Tang Jessica P. Monserrate Kristin White Carrie Baker Brachmann 《Mechanisms of development》2010,127(9-12):407-417
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim. 相似文献
4.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell. 相似文献
5.
Asymmetric cell division (ACD) is one of the processes creating the overall diversity of cell types in multicellular organisms. The essence of this process is that the daughter cells exit from it being different from both the parental cell and one another in their ability to further differentiation and specialization. The large bristles (macrochaetae) that are regularly arranged on the surface of the Drosophila adult function as mechanoreceptors, and since their development requires ACD, they have been extensively used as a model system for studying the genetic control of this process. Each macrochaete is composed of four specialized cells, the progeny resulting from several ACDs from a single sensory organ precursor (SOP) cell, which differentiates from the ectodermal cells of the wing imaginal disc in the third-instar larva and pupa. In this paper we review the experimental data on the genes and their products controlling the ACDs of the SOP cell and its daughter cells, and their further specialization. We discuss the main mechanisms determining the time when the cell enters ACD, as well as the mechanisms providing for the structural characteristics of asymmetric division, namely, polar distribution of protein determinants (Numb and Neuralized), orientation of the division spindle relative to these determinants, and unequal segregation of the determinants specifying the direction of daughter cell development. 相似文献
6.
In the development of the Drosophila central nervous system, some of the neuroblasts designated as neuroglioblasts generate both glia and neurons. Little is known about how neuroglioblasts produce these different cell types. NB6-4 in the thoracic segment (NB6-4T) is a neuroglioblast, although the corresponding cell in the abdominal segment (NB6-4A) produces only glia. Here, we describe the cell divisions in the NB6-4T lineage, following changes in cell number and cell arrangement. We also examined successive changes in the expression of glial cells missing (gcm) mRNA and protein, activity of which is known to direct glial fate from the neuronal default state. The first cell division of NB6-4T occurred in the medial-lateral orientation, and was found to bifurcate the glial and neuronal lineage. After division, the medial daughter cell expressed GCM protein to produce three glial cells, while the lateral daughter cell with no GCM expression produced ganglion mother cells, secondary precursors of neurons. Although gcm mRNA was present evenly in the cytoplasm of NB6-4T before the first cell division, it became detected asymmetrically in the cell during mitosis and eventually only in the medial daughter cell. In contrast, NB6-4A showed a symmetrical distribution of gcm mRNA and GCM protein through division. Our observations suggest that mechanisms regulating gcm mRNA expression and its translation play an important role in glial and neuronal lineage bifurcation that results from asymmetric cell division. 相似文献
7.
8.
9.
Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a "dominant centrosome." This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle-cortex interactions refine this alignment. 相似文献
10.
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila. 相似文献
11.
One widespread mechanism for the generation of diverse cell types is the unequal inheritance of cell fate determinants. Several such determinants have been identified in the fruitfly Drosophila melanogaster and the worm Caenorhabditis elegans and the molecular machinery responsible for their asymmetric segregation is beginning to be unraveled. To divide asymmetrically, cells establish an axis of polarity, orient the mitotic spindle along this axis and localize cell fate determinants to one side of the cell. During cytokinesis, determinants are then segregated into one of the two daughter cells where they direct cell fate. Here, we outline the steps and factors that are involved in this process in Drosophila and C. elegans and discuss their potential conservation in vertebrates. 相似文献
12.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood. 相似文献
13.
14.
S E Stringer M Mayer-Proschel A Kalyani M Rao J T Gallagher 《The Journal of biological chemistry》1999,274(36):25455-25460
The oligodendrocyte-type-2 astrocyte progenitor cells (precursors of oligodendrocytes and type-2 astrocytes) are an excellent system in which to study differentiation as they can be manipulated in vitro. Maintenance of oligodendrocyte-type-2 astrocyte progenitor cells requires basic fibroblast growth factor, a growth factor whose action normally depends on a heparan sulfate coreceptor. Biochemical analysis revealed a most surprising result: that the oligodendrocyte-type-2 astrocyte progenitors did not synthesize heparan sulfate, the near ubiquitous N-sulfated cell surface polysaccharide, but the chemically related heparin in a form that was almost completely N- and O-sulfated. The heparin was detected in the pericellular fraction of the cells and the culture medium. In contrast the differentiated glial subpopulations (oligodendrocytes and type-2 astrocytes) synthesized typical heparan sulfate but with distinctive fine structural features for each cell type. Thus heparin is a unique differentiation marker in the glial lineage. Previously heparin has been found only in a subset of mature mast cells called the connective tissue mast cells. Its presence within the developing nervous system on a precise population of progenitors may confer specific and essential recognition properties on those cells in relation to binding soluble growth and/or differentiation factors and the extracellular matrix. 相似文献
15.
16.
The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division 总被引:1,自引:0,他引:1
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud. 相似文献
17.
18.
Asymmetric cell division depends on the polarization of the dividing cell for the correct alignment of the mitotic spindle and the localization of cytoplasmic determinants. Receptor-independent activation of heterotrimeric G proteins by the Drosophila GoLoco protein Partner of Inscuteable seems to represent a novel mechanism to control these events. 相似文献
19.
DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila 总被引:1,自引:0,他引:1
The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies. 相似文献
20.
During asymmetric cell division in Drosophila sensory organ precursor cells, the Numb protein localizes asymmetrically and segregates into one daughter cell, where it influences cell fate by repressing signal transduction via the Notch receptor. We show here that Numb acts by polarizing the distribution of alpha-Adaptin, a protein involved in receptor-mediated endocytosis. alpha-Adaptin binds to Numb and localizes asymmetrically in a Numb-dependent fashion. Mutant forms of alpha-Adaptin that no longer bind to Numb fail to localize asymmetrically and cause numb-like defects in asymmetric cell division. Our results suggest a model in which Numb influences cell fate by downregulating Notch through polarized receptor-mediated endocytosis, since Numb also binds to the intracellular domain of Notch. 相似文献