首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

2.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

3.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

4.
5.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2β1 in tumor tissues from microtubule‐directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2β1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2β1? tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2β1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG‐PLA to co‐encapsulate the integrin α2β1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2β1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG‐PLA nanoparticles could reverse the resistance.  相似文献   

7.
8.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

10.
11.
12.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

13.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)‐1β is induced by silica and functions as the key pro‐inflammatory cytokine in this process. The Th17 response, which is induced by IL‐1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL‐1β and IL‐17 in silicosis, we used anakinra and an anti‐IL‐17 monoclonal antibody (mAb) to block the receptor of IL‐1β (IL‐RI) and IL‐17, respectively, in a mouse model of silicosis. We observed increased IL‐1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL‐1 type I receptor (IL‐1RI) antagonist anakinra substantially decreased silica‐induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL‐17‐neutralized silicosis group. IL‐17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL‐22 and IL‐1β during the lung inflammation of silicosis. Silica may induce IL‐1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL‐1β/IL‐1RI‐dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL‐22 and IL‐1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease.  相似文献   

16.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

17.
18.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号