首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.  相似文献   

2.
Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.  相似文献   

3.
Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.  相似文献   

4.
Two Saprolegnia isolates, JY isolated from silver crucian carp (Carassius auratus gibelio Bloch) and BMY isolated from zebra fish (Brachydanio rerio Hamilton) came from infections occurring concurrently in different locations in China. To confirm whether the two isolates were from the same Saprolegnia clone, comparative studies have been carried out based on their morphological, physiological and molecular characteristics. Observations showed that morphologically (both asexual and sexual organs) the two isolates were broadly similar and both isolates underwent repeated zoospore emergence. Comparing 704 base pairs of internal transcribed spacer (ITS) region and the 5.8S rDNA, we found isolates JY and BMY shared an identical ITS sequence with a minor variation (99.6 % similarity). Forty available sequences for representatives Saprolegnia spp. belonged to four phylogenetically separate clades. The two studied isolates fell within clade I that comprised a group of isolates which showed almost an identical ITS sequence but had been identified as a number of different morphological species. Our findings suggest that isolates JY and BMY appear to belong to the S. ferax clade and this clade (I) contains a number of closely related phylogenetic species. This is distinct from the more common fish pathogenic isolates, which belong to the Sparasitica clade (III) and are characterized by having cysts decorated by bundles of long hooked hairs and two further clades (II and IV) containing largely saprotrophic or soil born species.  相似文献   

5.
Numerous oomycetes colonise the crayfish cuticle, the best known being the crayfish plague pathogen Aphanomyces astaci. Although other oomycetes associated with crayfish complicate the isolation and molecular detection of A. astaci, their diversity is little known. To improve this knowledge, we analysed 95 oomycete isolates obtained during attempts to isolate A. astaci from crayfish presumably infected by this pathogen. We characterized the isolates morphologically and by sequencing of the nuclear internal transcribed spacer (ITS) region. We identified 13 taxa by molecular analysis. Ten of them were assigned to five genera; the remaining three were affiliated with the order Saprolegniales but could not be reliably assigned to any genus. Morphological identification to species level was only possible for 15 % of isolates; all corresponded to Saprolegnia ferax, which was confirmed by ITS sequencing. The most frequently isolated species were S. ferax and Saprolegnia australis. Only seven isolates of A. astaci were obtained, all from one disease outbreak. We show that oomycete cultures obtained as by-products of parasite isolation are valuable for oomycete diversity studies, but morphological identification may uncover only a fraction of their diversity. Further, we show that crayfish may be frequently associated with potentially serious parasites of other organisms.  相似文献   

6.
Numerous oomycetes colonise the crayfish cuticle, the best known being the crayfish plague pathogen Aphanomyces astaci. Although other oomycetes associated with crayfish complicate the isolation and molecular detection of A. astaci, their diversity is little known. To improve this knowledge, we analysed 95 oomycete isolates obtained during attempts to isolate A. astaci from crayfish presumably infected by this pathogen. We characterized the isolates morphologically and by sequencing of the nuclear internal transcribed spacer (ITS) region. We identified 13 taxa by molecular analysis. Ten of them were assigned to five genera; the remaining three were affiliated with the order Saprolegniales but could not be reliably assigned to any genus. Morphological identification to species level was only possible for 15 % of isolates; all corresponded to Saprolegnia ferax, which was confirmed by ITS sequencing. The most frequently isolated species were S. ferax and Saprolegnia australis. Only seven isolates of A. astaci were obtained, all from one disease outbreak. We show that oomycete cultures obtained as by-products of parasite isolation are valuable for oomycete diversity studies, but morphological identification may uncover only a fraction of their diversity. Further, we show that crayfish may be frequently associated with potentially serious parasites of other organisms.  相似文献   

7.
Water moulds (oomycetes) of the order Saprolegniales, such as Saprolegnia and Aphanomyces species, are responsible for devastating infections on fish in aquaculture, fish farms and hobby fish tanks. Members of the genus Saprolegnia cause Saprolegniosis, a disease that is characterised by visible white or grey patches of filamentous mycelium on the body or fins of freshwater fish. Up till 2002, Saprolegnia infections in aquaculture were kept under control with malachite green, an organic dye that is very efficient at killing the pathogen. However, the use of malachite green has been banned worldwide due to its carcinogenic and toxicological effects and this has resulted in a dramatic re-emergence of Saprolegnia infections in aquaculture. As a consequence Saprolegnia parasitica is now, economically, a very important fish pathogen, especially on catfish, salmon and trout species, and warrants further investigation to develop new alternative control strategies.  相似文献   

8.
《Fungal biology》2020,124(7):682-687
Saprolegnia spp. water moulds are opportunistic pathogens that can cause economic losses to aquaculture. The diseases caused by them are difficult to control since use of the effective drug, malachite green oxalate, is no longer permitted in several regions (including the European Union and USA). To develop an effective control strategy, Saprolegnia isolates must be maintained in the laboratory. Cryopreservation is a useful solution for long-term maintenance; however, at present, there is no developed protocol for the cryopreservation of Saprolegnia spp. Here, we isolated and identified three Saprolegnia species, S. parasitica, S. australis and S. ferax, and developed a deep-freezing protocol that enables the long-term archiving of these species. The survival and growth rates of isolates kept at −80 °C for 3, 6, 9 and 12 months, were tested and compared among the species examined. Although the growth rates of frozen isolates were significantly lower than those of the control (i.e. non-frozen) isolates, the overall survival rate (>90%) indicated the effectiveness of the technique developed. Thus, the protocol developed appears to be a promising method for the long-term preservation of Saprolegnia isolates and may facilitate the creation of stock collections.  相似文献   

9.
Fungal isolates from salmonid eggs displayed apparently unique patterns of biochemical characteristics at both the generic and specific levels. of the five genera examinedAchlya andPythium were able to assimilate 13–16 out of 19 carbohydrates.Aphanomyces was able to assimilate only glucose and starch, which was assimilated by all isolates. Members ofSaprolegnia displayed identical patterns of carbohydrate assimilation, except forS. hypogyna, which was also able to assimilate melibiose, in common withAchlya, Pythium, andLeptolegnia. Pythium was the only genus capable of assimilating salicin. OnlyAchlya andP. monospermum were able to assimilate rhamnose. In terms of amino acid assimilation isolates ofSaprolegnia ferax andS. diclina displayed an identical patterns, as did isolates ofS. parasitica andS. hypogyna. OnlyAphanomyces frigidophilus isolate was capable of assimilating cysteine. All genera exceptPythium assimilated glutamine, a fundamental amino acid. All isolates exhibited lipase and fatty acid esterase activities but no cellulase acitivity. The biochemical characteristics discovered in this study offer possibilities for identification and classification of these fungi, which are discussed herein.  相似文献   

10.
A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 μM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 μM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 μg ml−1). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 μg ml−1) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 μg ml−1). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 μM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 μg ml−1) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.  相似文献   

11.
The ability of five monoclonal antibodies (Mabs) raised against a pathogenic Saprolegnia parasitica isolate from brown trout to detect and differentiate between isolates with bundles of long hairs (S. parasitica) and other Saprolegnia species was determined by means of an indirect immunofluorescence assay. Four of the Mabs used recognized some of the long-haired S. parasitica isolates but also cross-reacted with other Saprolegnia species without bundles of hairs and with Achlya sp. The other Mab (named 18A6) was able to differentiate between the asexual and most of the sexual isolates in the group of long-haired S. parasitica isolates, but did not recognize Achlya sp. or the Saprolegnia species without bundles of hairs, with the exception of S. hypogyna. These results indicate that isolates with bundles of long hairs are closely related with other members of genus Saprolegnia and share several antigens. However, Mab 18A6 seems to recognize an epitope that is expressed mainly in the asexual isolates in the long-haired S. parasitica isolates.  相似文献   

12.
Saprolegnia diclina andS. parasitica isolated from three sources could germinate in strong acidic conditions. Growth ability correlated with the species of fungi rather than with the sources from which they were isolated.S.diclina isolates appeared to germinate at a pH condition as low as 3.5, whereasS. parasitica isolates could not germinate at below pH 3.8.S. parasitica isolates from visceral mycoses still showed good growth at 30°C, whereas other isolates did not. Also,S. parasitica isolates from visceral mycoses produced more abundant motile zoospores, and continued to do so for a longer period of time (28 d), thanS. parasitica isolates from external saprolegniasis andS. diclina isolates.  相似文献   

13.
Ji Thakur 《Hydrobiologia》1970,36(1):179-186
Summary Four species of the genusSaprolegnia Nees, viz.,Saprolegnia diclina, S. delica, S. mixta, S. monoica var.glomerata, and three from the achlyoid group, viz.,Achlya colorata, A. racemosa, andA. americana were isolated on various substrata used as baits from the vicinity of University campus. ExcludingS. diclina andA. americana, all the above fungi are reported as occurring new from this country.  相似文献   

14.
Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases.  相似文献   

15.
In order to control saprolegniosis in Prussian carp (Carassius gibelio (Bloch, 1782) eggs, it is important to screen herb extracts as potential anti‐Saprolegnia drugs in Prussian carp hatcheries. For this purpose, an oomycete water mould (strain SC) isolated from Prussian carp [Carassius gibelio (Bloch, 1782)] eggs suffering from saprolegniosis was characterised morphologically as well as from ITS rDNA sequence data. Initially identified as a Saprolegnia sp. based on its morphological features, the constructed phylogenetic tree using the neighbour joining method further indicated that the SC strain was closely related to Saprolegnia australis R. F. Elliott 1968 strain VI05733 (GenBank accession no. HE798564 ), and which could form biofilm communities as virulence factors. In addition, aqueous extracts from forty Chinese herbs were screened as possible anti‐Saprolegnia agents. Among them, a 1 g ml?1 extract from Radix sanguisorbae was the most efficacious anti‐Saprolegnia agent, indicated by the minimum inhibitory concentration that was as low as 256 mg L?1. Relative survival of 73 and 88% was obtained against the SC strain in fish eggs at concentrations of 256 and 1280 mg L?1, respectively. This is the first known report of Saprolegnia australis R. F. Elliott 1968 infection in C. gibelio (Bloch, 1782) eggs involving the screening of R. sanguisorbae extracts as potential anti‐Saprolegnia agents.  相似文献   

16.
Saprolegniosis, the disease caused by Saprolegnia sp., results in considerable economic losses in aquaculture. Current control methods are inadequate, as they are either largely ineffective or present environmental and fish health concerns. Vaccination of fish presents an attractive alternative to these control methods. Therefore we set out to identify suitable antigens that could help generate a fish vaccine against Saprolegnia parasitica. Unexpectedly, antibodies against S. parasitica were found in serum from healthy rainbow trout, Oncorhynchus mykiss. The antibodies detected a single band in secreted proteins that were run on a one-dimensional SDS-polyacrylamide gel, which corresponded to two protein spots on a two-dimensional gel. The proteins were analysed by liquid chromatography tandem mass spectrometry. Mascot and bioinformatic analysis resulted in the identification of a single secreted protein, SpSsp1, of 481 amino acid residues, containing a subtilisin domain. Expression analysis demonstrated that SpSsp1 is highly expressed in all tested mycelial stages of S. parasitica. Investigation of other non-infected trout from several fish farms in the United Kingdom showed similar activity in their sera towards SpSsp1. Several fish that had no visible saprolegniosis showed an antibody response towards SpSsp1 suggesting that SpSsp1 might be a useful candidate for future vaccination trial experiments.  相似文献   

17.
The Oomycete Saprolegnia ferax incorporates 3H from both cycloartenol-[2-3H] and lanosterol-[2-3H] into its normal sterols cholesterol, fucosterol, desmosterol, and 24-methylenecholesterol. It is concluded that sterol biosynthesis in this organism is via cycloartenol and the taxonomic implications are discussed.  相似文献   

18.
The aquatic fungi cultured from eggs, alevins and broodfish of brown trout Salmo trutta belonged to the genus Saprolegnia and were identified as S. diclina , S. australis , S. ferax , S. furcata , S. hypogyna , S. unispora and S. parasitica . The species obtained from infected eggs and alevins were different to those from infected fish. Several Saprolegnia species were isolated from eggs and alevins, whereas all the isolates obtained from broodfish were the pathogenic S. parasitica .  相似文献   

19.
Restriction fragment length polymorphisms (RFLPs) in two regions of the ribosomal DNA (rDNA) repeat unit were examined in 33 strains representing 18 species ofSaprolegnia. The Polymerase Chain Reaction (PCR) was used to separately amplify the 18S rDNA and the region spanning the two internal transcribed spacers (ITS) and the 5.8S ribosomal RNA gene. Amplified products were subjected to a battery of restriction endonucleases to generate various fingerprints. The internal transcribed spacer region exhibited more variability than the 18S rDNA and yielded distinctive profiles for most of the species examined. Most of the species showing 100% similarity for the 18S rDNA could be distinguished by 5.8S + ITS restriction polymorphisms except forS. hypogyna, S. delica, S. lapponica, andS. mixta. The rDNA data indicate thatS. lapponica andS. mixta are conspecific withS. ferax, whereas there is no support for the proposed synonymies ofS. diclina withS. delica and ofS. mixta withS. monoica. Results from cluster analysis of the two data sets were very consistent and tree topologies were the same, regardless of the clustering method used. A further examination of multiple strains in theS. diclina-S. parasitica complex showed that restriction profiles are conserved across different strains ofS. parasitica originating from the U.K. and Japan.HhaI andBsaI restriction polymorphisms were observed in isolates from the U.S. and India. The endonucleaseBstUI was diagnostic forS. parasitica, generating identical fingerprints for all strains regardless of host and geographic origin. Except for the atypical strain ATCC 36144, restriction patterns were also largely conserved inS. diclina. Correlation of the rDNA data with morphological and ultrastructural features showed thatS. diclina andS. parasitica are not conspecific. Restriction polymorphisms in PCR-amplified rDNA provide a molecular basis for the classification ofSaprolegnia and will be useful for the identification of strains that fail to produce antheridia and oogonia.  相似文献   

20.
《Experimental mycology》1989,13(4):372-379
Saprolegnia ferax grows vegetatively when not nutrient limited; however, when starved, it switches to sexual reproduction.Saprolegnia parasitica does not show this reproductive competence in response to starvation. This study examined lipoxygenase activity inS. ferax andS. parasitica during starvation. Lipoxygenase activity in starved cultures ofS. ferax decreased in a time-dependent manner, reaching less than 20% of initial levels by 72 h and decreasing to less than 10% by 192 h, the onset of reproductive structures.S. ferax showed no decline in peroxidase activity over 72 h of starvation.S. parasitica had initial lipoxygenase activity 50% greater thanS. ferax and showed no decline in lipoxygenase activity during 72 h of starvation and only a small decline at 192 h. StarvedS. ferax cultures resumed vegetative growth after transfer back to rich medium, and lipoxygenase activity returned to 70–80% of initial levels after 24 h in rich medium.S. ferax cultures transferred to full-strength medium maintained initial lipoxygenase activity levels for 48 h, then showed a sharp decrease between 48 and 72 h, the time at which nutrients become limiting. Cultures transferred to 40 and 20% strength media showed more rapid declines in lipoxygenase activity. These data demonstrate that starvation, an environmental cue that initiates sexual reproduction, depresses lipoxygenase activity in the reproductively competentS. ferax but not in the reproductively recalcitrantS. parasitica. These data are consistent with the hypothesis that lipoxygenase products are associated with vegetative growth but not sexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号