首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Delimitation of species boundaries within the fungal genus Diaporthe has been challenging, but the analyses of combined multilocus DNA sequences has become an important tool to infer phylogenetic relationships and to circumscribe species. However, analyses of congruence between individual gene genealogies and the application of the genealogical concordance principle have been somehow overlooked. We noted that a group of species including D. amygdali, D. garethjonesii, D. sterilis, D. kadsurae, D. ternstroemia, D. ovoicicola, D. fusicola, D. chongqingensis and D. mediterranea, commonly known as D. amygdali complex, occupy a monophyletic clade in Diaporthe phylogenies but the limits of all species within the complex are not entirely clear. To assess the boundaries of species within this complex we employed the Genealogical Concordance Phylogenetic Species Recognition principle (GCPSR) and coalescence-based models: General Mixed Yule-Coalescent (GMYC) and Poisson Tree Processes (PTP). The incongruence detected between individual gene phylogenies, as well as the results of coalescent methods do not support the recognition of lineages within the complex as distinct species. Moreover, results support the absence of reproductive isolation and barriers to gene flow in this complex, thus providing further evidence that the D. amygdali species complex constitutes a single species. This study highlights the relevance of the application of the GCPSR principle, showing that concatenation analysis of multilocus DNA sequences, although being a powerful tool, might lead to an erroneous definition of species limits. Additionally, it further shows that coalescent methods are useful tools to assist in a more robust delimitation of species boundaries in the genus Diaporthe.  相似文献   

2.
The genus Otidea was recently monographed and studied phylogenetically, but knowledge of the diversity and distribution of Otidea species in China is fragmentary. In this study, collections from China were examined morphologically and included in phylogenetic analyses. Using LSU, TEF1-α, and RPB2 new species were placed within previously recognized clades in the genus. The results agree with both Genealogical Concordance Phylogenetic Species Recognition (GCPSR) and genetic divergence as previously reported. Three new species, Otidea hanseniae, Otidea korfii and Otidea purpureogrisea are recognized based on phylogenetic reconstruction using ITS, LSU, TEF1- α and RPB2. Comments on some incompletely known species are added. With the discovery of these three new species, the genus Otidea in China proves to be more diverse than previously recognized.  相似文献   

3.
Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were “hidden” within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.  相似文献   

4.

Background

Analysis of the population genetic structure of microbial species is of fundamental importance to many scientific disciplines because it can identify cryptic species, reveal reproductive mode, and elucidate processes that contribute to pathogen evolution. Here, we examined the population genetic structure and geographic differentiation of the sexual, dimorphic fungus Blastomyces dermatitidis, the causative agent of blastomycosis.

Methodology/Principal Findings

Criteria for Genealogical Concordance Phylogenetic Species Recognition (GCPSR) applied to seven nuclear loci (arf6, chs2, drk1, fads, pyrF, tub1, and its-2) from 78 clinical and environmental isolates identified two previously unrecognized phylogenetic species. Four of seven single gene phylogenies examined (chs2, drk1, pyrF, and its-2) supported the separation of Phylogenetic Species 1 (PS1) and Phylogenetic Species 2 (PS2) which were also well differentiated in the concatenated chs2-drk1-fads-pyrF-tub1-arf6-its2 genealogy with all isolates falling into one of two evolutionarily independent lineages. Phylogenetic species were genetically distinct with interspecific divergence 4-fold greater than intraspecific divergence and a high Fst value (0.772, P<0.001) indicative of restricted gene flow between PS1 and PS2. Whereas panmixia expected of a single freely recombining population was not observed, recombination was detected when PS1 and PS2 were assessed separately, suggesting reproductive isolation. Random mating among PS1 isolates, which were distributed across North America, was only detected after partitioning isolates into six geographic regions. The PS2 population, found predominantly in the hyper-endemic regions of northwestern Ontario, Wisconsin, and Minnesota, contained a substantial clonal component with random mating detected only among unique genotypes in the population.

Conclusions/Significance

These analyses provide evidence for a genetically divergent clade within Blastomyces dermatitidis, which we use to describe a novel species, Blastomyces gilchristii sp. nov. In addition, we discuss the value of population genetic and phylogenetic analyses as a foundation for disease surveillance, understanding pathogen evolution, and discerning phenotypic differences between phylogenetic species.  相似文献   

5.
Fusarium oxysporum is a ubiquitous species complex of soilborne plant pathogens that comprises many different formae speciales, each characterized by a high degree of host specificity. In this study, the evolutionary relationships between different isolates of the F. oxysporum species complex have been examined, with a special emphasis on the formae speciales lycopersici and radicis-lycopersici, sharing tomato as host while causing different symptoms. Phylogenetic analyses of partial sequences of a housekeeping gene, the elongation factor-1α (EF-1α) gene, and a gene encoding a pathogenicity trait, the exopolygalacturonase (pgx4) gene, were conducted on a worldwide collection of F. oxysporum strains representing the most frequently observed vegetative compatibility groups of these formae speciales. Based on the reconstructed phylogenies, multiple evolutionary lineages were found for both formae speciales. However, different tree topologies and statistical parameters were obtained for the cladograms as several strains switched from one cluster to another depending on the locus that was used to infer the phylogeny. In addition, mating type analysis showed a mixed distribution of the MAT1-1 and MAT1-2 alleles in the F. oxysporum species complex, irrespective of the geographic origin of the tested isolates. This observation, as well as the topological conflicts that were detected between EF-1α and pgx4, are discussed in relation to the evolutionary history of the F. oxysporum species complex.  相似文献   

6.
Metarhizium anisopliae is an insect pathogenic fungus with a worldwide distribution. It is being developed and used as a biocontrol agent against a wide range of insect pests but relatively little is known of the life history of this fungus. We tested hypotheses concerning reproductive isolation and recombination in a sample of heat-active (ability to grow at 37 degrees C) and cold-active (ability to grow at 8 degrees C) sympatrically occurring isolates of M. anisopliae from Ontario, Canada by assaying nucleotide sequence variation at six polymorphic loci: the internally transcribed spacer (ITS) region of the nuclear ribosomal DNA repeat, and portions of calmodulin (CAL), chitin synthase (CHS), subtilisin-like protease (PR1), neutral trehalase (NTL) and actin (ACT)-encoding genes. The most parsimonious trees constructed showed a topology consistent with the heat-active and cold-active isolates as two monophyletic groups. We then applied Genealogical Concordance Phylogenetic Species Recognition (GCPSR) to the genealogical trees and concluded that the transition from concordance among branches to incongruity among branches delimited two species of M. anisopliae within Ontario. The GCPSR of two species was supported by intraspecific incongruity within each species when tested using the Partition Homogeneity test, indicating recombination. The GCPSR of two species also corresponded to the heat-active and cold-active groups. As the groups are morphologically indistinguishable we applied the term 'cryptic species'. Therefore, the sympatrically occurring heat-active and cold-active isolates represent different cryptic species with a history of recombination among isolates within each species.  相似文献   

7.
Sequence data of two coding and three non-coding loci were used to study the taxonomic identity within and relatedness among seven previously defined cryptic species (CSP) of Phialocephala fortinii and Acephala applanata using two approaches of species recognition. Identification of taxonomic groups corresponding to CSP was ambiguous in some cases when applying solely the genealogical concordance phylogenetic species recognition (GCPSR) concept. The definition of groups corresponding to CSP using GCPSR was complicated due to shared sequence haplotypes between CSP, unresolved CSP for several loci, and possible introgression. GCPSR in conjunction with a population genetic approach improved resolution significantly and the CSP status could be confirmed for all seven CSP of P. fortinii s.l. The most critical step in both analyses was the definition of groups. The combination of several classes of markers differing in resolution helped to define species boundaries.  相似文献   

8.
Wheat is the most important cereal grown in the European Union and Spain is its fifth largest wheat producer. There is little information about Fusarium species associated with wheat in Spain. Phylogenetic diversity of 51 strains belonging to Fusarium incarnatum-equiseti species complex (FIESC) isolated from Spanish wheat was investigated using partial sequences of the translation elongation factor gene (EF-1α). Maximum-parsimony and Bayesian analysis of aligned DNA sequences resolved 18 haplotypes and 7 phylogenetic species. Strains morphologically identified as F. equiseti belonged to two different phylogenetic species, FIESC-5 and FIESC-14. Some correlation between phylogenetic species and geographical region was found. The present results highlight the potential contribution of FIESC to the mycotoxin contamination of Spanish wheat.  相似文献   

9.
The genus Oxystele, a member of the highly diverse marine gastropod superfamily Trochoidea, is endemic to southern Africa. Members of the genus include some of the most abundant molluscs on southern African shores and are important components of littoral biodiversity in rocky intertidal habitats. Species delimitation within the genus is still controversial, especially regarding the complex O. impervia / O. variegata. Here, we assessed species boundaries within the genus using DNA barcoding and phylogenetic tree reconstruction. We analysed 56 specimens using the mitochondrial gene COI. Our analysis delimits five molecular operational taxonomic units (MOTUs), and distinguishes O. impervia from O. variegata. However, we reveal important discrepancies between MOTUs and morphology-based species identification and discuss alternative hypotheses that can account for this. Finally, we indicate the need for future study that includes additional genes, and the combination of both morphology and genetic techniques (e.g. AFLP or microsatellites) to get deeper insight into species delimitation within the genus.  相似文献   

10.
A collection of 247 true morels (Morchella spp.) primarily from the Mediterranean and Aegean Regions of Southern Turkey, were analyzed for species diversity using partial RNA polymerase I (RPB1) and nuclear ribosomal large subunit (LSU) rDNA gene sequences. Based on the result of this initial screen, 62 collections representing the full range of genetic diversity sampled were subjected to multigene phylogenetic species recognition based on genealogical concordance (GCPSR). The 62-taxon dataset consisted of partial sequences from three nuclear protein-coding genes, RNA polymerase I (RPB1), RNA polymerase II (RPB2), translation elongation factor (EF1-α), and partial LSU rDNA gene sequences. Phylogenetic analyses of the individual and combined datasets, using maximum parsimony (MP) and maximum likelihood (ML), yielded nearly fully resolved phylogenies that were highly concordant topologically. GCPSR analysis of the 62-taxon dataset resolved 15 putative phylogenetically distinct species. The early diverging Elata (black morels) and Esculenta Clades (yellow morels) were represented, respectively, by 13 and two species. Because a Latin binomial can be applied with confidence to only one of the 15 species (Morchella semilibera), species were identified by clade (Mel for Elata and Mes for Esculenta) followed by a unique Arabic number for each species within these two clades. Eight of the species within the Elata Clade appear to be novel, including all seven species within the Mel-20-to-31 subclade and its sister designated Mel-25. Results of the present study provide essential data for ensuring the sustainability of morel harvests through the formulation of sound conservation policies.  相似文献   

11.
12.
The big-fin reef squid, Sepioteuthis cf. lessoniana (Lesson 1930), is an important commodity species within artisanal and near-shore fisheries in the Indian and Indo-Pacific regions. While there has been some genetic and physical evidence that supports the existence of a species complex within S. cf. lessoniana, these studies have been extremely limited in scope geographically. To clarify the extent of cryptic diversity within S. cf. lessoniana, this study examines phylogenetic relationships using mitochondrial genes (cytochrome oxidase c, 16s ribosomal RNA) and nuclear genes (rhodopsin, octopine dehydrogenase) from nearly 400 individuals sampled from throughout the Indian, Indo-Pacific, and Pacific Ocean portions of the range of this species. Phylogenetic analyses using maximum likelihood methods and Bayesian inference identified three distinct lineages with no clear geographic delineations or morphological discriminations. Phylogeographic structure analysis showed high levels of genetic connectivity in the most widespread lineage, lineage C and low levels of connectivity in lineage B. This study provides significant phylogenetic evidence for cryptic lineages within this complex and confirms that cryptic lineages of S. cf. lessoniana occur in sympatry at both small and large spatial scales. Furthermore, it suggests that two closely related co-occurring cryptic lineages have pronounced differences in population structure, implying that underlying differences in ecology and/or life history may facilitate co-occurrence. Further studies are needed to assess the range and extent of cryptic speciation throughout the distribution of this complex. This information is extremely useful as a starting point for future studies exploring the evolution of diversity within Sepioteuthis and can be used to guide fisheries management efforts.  相似文献   

13.
Fungal species belonging to the genus Melampsora (Basidiomycota, Pucciniales) comprise rust pathogens that alternate between Salicaceae and other plant hosts. Species delineation and identification are difficult within this group due to the paucity of observable morphological features. Several Melampsora rusts are highly host-specific and this feature has been used for identification at the species level. However, this criterion is not always reliable since different Melampsora rust species can overlap on one host but specialize on a different one. To date, two different species recognition methods are used to recognize and define species within the Melampsora genus: (i) morphological species recognition, which is based solely on morphological criteria; and (ii) ecological species recognition, which combines morphological criteria with host range to recognize and define species. In order to clarify species recognition within the Melampsora genus, we applied phylogenetic species recognition to Melampsora poplar rusts by conducting molecular phylogenetic analyses on 15 Melampsora taxa using six nuclear and mitochondrial loci. By assessing the genealogical concordance between phylogenies, we identified 12 lineages that evolved independently, corresponding to distinct phylogenetic species. All 12 lineages were concordant with host specialization, but only three belonged to strictly defined morphological species. The estimation of the species tree obtained with Bayesian concordance analysis highlighted a potential co-evolutionary history between Melampsora species and their reciprocal aecial host plants. Within the Melampsora speciation process, aecial host may have had a strong effect on ancestral evolution, whereas telial host specificity seems to have evolved more recently. The morphological characters initially used to define species boundaries in the Melampsora genus are not reflective of the evolutionary and genetic relationships among poplar rusts. In order to construct a more meaningful taxonomy, host specificity must be considered an important criterion for delineating and describing species within the genus Melampsora as previously suggested by ecological species recognition.  相似文献   

14.
15.
Abstract

Members of Fusarium oxysporum species complex (FOSC) are economically most important plant pathogenic fungi. Until now, the classification of FOSC members in Iran is not well described. So, the objective of the current research was to study the phylogenetic diversity of FOSC strains recovered from agricultural soils in Iran. A total of 45 isolates belonging to the FOSC were recovered from agricultural soils in Iran. The identification of the members of F. oxysporum f. sp. vasinfectum (Fov) and F. oxysporum f. sp. ciceris (Foc) was confirmed molecularly using Fov-eg-f/Fov-eg-r and Foc0-12f/Foc0-12r primers, respectively. F. redolens isolates were distinguished from other FOSC using Redolens-F/Redolens-R primers. Comparisons of DNA sequence data from a portion of the tef1 gene revealed all isolates belonged to Fov, Foc, F. commune and F. redolens. This is the first in-depth report on molecular identification of FOSC and related species isolated from agricultural soils in Iran.  相似文献   

16.
The taxonomy and evolutionary species boundaries in a global collection of Cercospora isolates from Beta vulgaris was investigated based on sequences of six loci. Species boundaries were assessed using concatenated multi-locus phylogenies, Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Processes (PTP), and Bayes factor delimitation (BFD) framework. Cercospora beticola was confirmed as the primary cause of Cercospora leaf spot (CLS) on B. vulgaris. Cercospora apii, C. cf. flagellaris, Cercospora sp. G, and C. zebrina were also identified in association with CLS on B. vulgaris. Cercospora apii and C. cf. flagellaris were pathogenic to table beet but Cercospora sp. G and C. zebrina did not cause disease. Genealogical concordance phylogenetic species recognition, GMYC and PTP methods failed to differentiate C. apii and C. beticola as separate species. On the other hand, multi-species coalescent analysis based on BFD supported separation of C. apii and C. beticola into distinct species; and provided evidence of evolutionary independent lineages within C. beticola. Extensive intra- and intergenic recombination, incomplete lineage sorting and dominance of clonal reproduction complicate evolutionary species recognition in the genus Cercospora. The results warrant morphological and phylogenetic studies to disentangle cryptic speciation within C. beticola.  相似文献   

17.
The lichen genus Cetrelia represents a taxonomically interesting case where morphologically almost uniform populations differ considerably from each other chemically. Similar variation is not uncommon among lichenized fungi, but it is disputable whether such populations should be considered entities at the species level. Species boundaries in Cetrelia are traditionally delimited either as solely based on morphology or as combinations of morpho- and chemotypes. A dataset of four nuclear markers (ITS, IGS, Mcm7, RPB1) from 62 specimens, representing ten Cetrelia species, was analysed within Bayesian and maximum likelihood frameworks. Analyses recovered a well-resolved phylogeny where the traditional species generally were monophyletic, with the exception of Cetrelia chicitae and Cetrelia pseudolivetorum. Species delimitation analyses supported the distinction of 15 groups within the studied Cetrelia taxa, dividing three traditionally identified species into some species candidates. Chemotypes, distinguished according to the major medullary substance, clearly correlated with clades recovered within Cetrelia, while samples with the same reproductive mode were dispersed throughout the phylogenetic tree. Consequently, delimiting Cetrelia species based only on reproductive morphology is not supported phylogenetically. Character analyses suggest that chemical characters have been more consistent compared to reproductive mode and indicate that metabolite evolution in Cetrelia towards more complex substances is probable.  相似文献   

18.
Shoot and branch canker and tree decline of kumquat (Fortunella margarita cv. Guban) were recorded in Yangshuo County, Guilin City, in the Guangxi Zhuang Autonomous Region of China during 2008–2011. Fusarium oxysporum and a new Fusarium species within the Gibberella fujikuroi complex (Fusarium sp. GLB1) were isolated repeatedly from the infected shoots and branches. Species identifications were verified by their high translation elongation factor 1‐alpha (TEF1) sequence similarity with those of the species epitypes. Koch's postulates were fulfilled on kumquat (cv. Guban) and mandarin establishing pathogenicity. To our knowledge, this is the first report of Fusarium shoot canker disease caused by F. oxysporum and Fusarium sp. on kumquat.  相似文献   

19.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

20.
We constructed a two-locus database, comprising partial translation elongation factor (EF-1α) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex (FOSC). Of the 850 isolates typed, 101 EF-1α, 203 IGS rDNA, and 256 two-locus sequence types (STs) were differentiated. Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant. This analysis also revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin. A congruence analysis, comparing partial EF-1α and IGS rDNA bootstrap consensus, identified a significant number of conflicting relationships dispersed throughout the bipartitions, suggesting that some of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号