首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with 15N-labeled nitrogen, and we tracked the incorporation of 15N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.  相似文献   

3.
4.
Endophytic fungi may display preferential tissue colonization within their plant hosts. Here we tested if the endophytic, insect pathogenic fungi (EIPF) Metarhizium and Beauveria showed preferential localization within plant tissues, in the field and under laboratory conditions. In the field, plants were sampled from three separate sites (Brock University, St. Catharines, Ontario; Pelham, Ontario; and Torngat Mountains National Park, Newfoundland, Canada) and EIPF were isolated from plant roots, the hypocotyl, and stem and leaves. Two genera of EIPF, Metarhizium spp. and Beauveria bassiana, were isolated from plants sampled, as well as the nematophagous fungus, Pochonia chlamydosporium. Metarhizium spp. were almost exclusively found in roots, whereas B. bassiana and P. chlamydosporium were found throughout the plant. The Metarhizium species were identified by RFLP and 95 % were Metarhizium robertsii, 4.3 % were M. brunneum, and 0.7 % were M. guizhouense. Lab studies with M. robertsii and B. bassiana reflected observations found in the field, that is, Metarhizium was restricted to the roots of plants while B. bassiana was found throughout the plant. Insect infection by these EIPF is preferential with respect to above and below ground insects, and the present study correlates above and below ground insect infections with endophytic colonization by these EIPF.  相似文献   

5.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   

6.
《Journal of Asia》2022,25(2):101913
The red imported fire ant (RIFA), Solenopsis invicta, is one of the globalized invasive pests. This study focused on pathogenicity and virulence of entomopathogenic fungi as one of the biological control agents to RIFA workers under different temperatures. The fungal pathogen, Beauveria bassiana ANU1 was isolated from Korea in 2015 and showed the pathogenicity to RIFA workers. A conidial suspension (1 × 107 conidia/ml) induced a low mortality from day 2 after treatment and reached to 100% mortality at day 7 and day 8 after treatment for major and minor workers, respectively. The median lethal concentrations of B. bassiana ANU1 were calculated as 3.9 × 103 for major and 4.6 × 103 for minor workers at day 7 after treatment. Low temperatures decreased a virulence of B. bassiana ANU1 (1 × 107 conidia/ml) to RIFA and showed mortality of 26.6% for major and 20% for minor workers. Based on bioassay results, this study provides one of possibilities of effective and successful strategy for controlling RIFA by entomopathogenic fungi.  相似文献   

7.
Understanding habitat selection of fungal entomopathogens is critical to improve the efficacy, persistence and cost of these fungi as microbial insecticides. This study sought to determine the prevalence of Metarhizium and Beauveria spp. isolated from the rhizosphere of strawberry, blueberry, grape and Christmas tree crops in the Willamette Valley of Oregon. Entomopathogenic fungi were assigned to thirteen species based on molecular phylogenetic criteria. Four species of Metarhizium were isolated including Metarhizium brunneum, Metarhizium guizhouense, Metarhizium robertsii, and Metarhizium flavoviride var. pemphigi. Nine Beauveria species were isolated including, Beauveria brongniartii, an undescribed species referred to as Clade C and seven phylogenetic species of Beauveria bassiana. Strawberries and blueberries were significantly associated with M. brunneum and Christmas trees with M. guizhouense and M. robertsii. Grapes were significantly associated with B. bassiana phylogenetic species Bbas-16. All of the Metarhizium isolates screened were pathogenic to Otiorhynchus sulcatus larvae in laboratory bioassays but only M. brunneum and M. robertsii caused significant levels of infection. The study results suggest that certain species of Metarhizium and Beauveria are significantly associated with the strawberry, blueberry and Christmas tree rhizosphere and could potentially provide better control of O. sulcatus.  相似文献   

8.
《Fungal biology》2021,125(11):891-904
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.  相似文献   

9.
《Process Biochemistry》2007,42(1):40-45
In this work, optimizing trace element composition was attempted as a primary strategy to improve surfactin production from Bacillus subtilis ATCC 21332. Statistical experimental design (Taguchi method) was applied for the purpose of identifying optimal trace element composition in the medium. Of the five trace elements examined, Mg2+, K+, Mn2+, and Fe2+ were found to be more significant factors affecting surfactin production by the B. subtilis strain. In the absence of Mg2+ or K+, surfactin yield decreased to 0.4 g/l, which was only 25% of the value obtained from the control run. When Mn2+ and Fe2+ were both absent, the production yield also dropped to ca. 0.6 g/l, approximately one-third of the control value. However, when only one of the two metal ions (Fe2+ or Mn2+) was missing, the B. subtilis ATCC 21332 strain was able to remain over 80% of original surfactin productivity, suggesting that some interactive correlations among the selected metal ions may involve. Taguchi method was thus applied to reveal the interactive effects of Mg2+, K+, Mn2+, Fe2+ on surfactin production. The results show that interaction of Mg2+ and K+ reached significant level. By further optimizing Mg2+ and K+ concentrations in the medium, the surfactin production was boosted to 3.34 g/l, which nearly doubled the yield obtained from the original control.  相似文献   

10.
An extracellular acid phytase was purified to homogeneity from the culture supernatant of the Saccharomyces cerevisiae CY strain by ultrafiltration, DEAE-Sepharose column chromatography, and Sephacryl S-300 gel filtration. The molecular weight of the purified enzyme was estimated to be 630 kDa by gel filtration. Removing the sugar chain by endoglycosidase H digestion revealed that the molecular mass of the protein decreased to 446 kDa by gel filtration and gave a band of 55 kDa by SDS-PAGE. The purified enzyme was most active at pH 3.6 and 40 °C and was fairly stable from pH 2.5 to 5.0. The phytase displayed broad substrate specificity and had a Km value of 0.66 mM (sodium phytate, pH 3.6, 40 °C). The phytase activity was completely inhibited by Fe3+ and Hg2+, and strongly inhibited (maximum of 91%) by Ba2+, Co2+, Cu+, Cu2+, Fe2+, Mg2+, and Sn2+ at 5 mM concentrations.  相似文献   

11.

Intracellular trehalose accumulation is relevant to fungal life and pathogenicity. Trehalose-6-phosphate synthase (TPS) is known to control the first step of trehalose synthesis, but functions of multiple TPS genes in some filamentous fungi are variable. Here, we examined the functions of two TPS genes (tpsA and tpsB) in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest control. Intracellular TPS activity and trehalose content decreased by 71–75 and 72–80% in ΔtpsA, and 21–30 and 15–45% in ΔtpsB, respectively, and to undetectable levels in ΔtpsAΔtpsB, under normal and stressful conditions. The three mutants lost 33, 50, and 98% of conidiation capacity in standard cultures. Conidial quality indicated by viability, density, intracellular trehalose content, cell wall integrity, and hydrophobicity was more impaired in ΔtpsA than in ΔtpsB and mostly in ΔtpsAΔtpsB, which was also most sensitive to nutritional, chemical, and environmental stresses and least virulent to Galleria mellonella larvae. Almost all of phenotypic defects in ΔtpsAΔtpsB approached to the sums of those observed in ΔtpsA and ΔtpsB and were restored by targeted gene complementation. Altogether, TpsA and TpsB play complementary roles in sustaining trehalose synthesis, conidiation capacity, conidial quality, multiple stress tolerance, and virulence, highlighting a significance of both for the fungal adaptation to environment and host.

  相似文献   

12.
13.
The American cockroach Periplaneta americana, one of the worlds' most important urban insect pests was tested with entomopathogenic fungi. Most promising Metarhizium anisopliae, Metarhizium robertsii and Beauveria bassiana killed nymphs (≥ 81.7% mortality, 25 days after treatment), and these fungi developed on all dead insects. Other fungi tested were less virulent (Metarhizium frigidum and Purpureocillium lilacinum) or avirulent (Isaria cateniobliqua, Isaria farinosa, Simplicillium lanosoniveum, Sporothrix insectorum and Tolypocladium cylindrosporum). Intrageneric and intraspecific variability of fungal activity was detected. Adults were highly susceptible, and oothecae proved to be more resistant than nymphs and adults to infection with M. anisopliae IP 46. Findings of the study underscore the potential of fungi as biocontrol agents against this pest.  相似文献   

14.
《Fungal biology》2021,125(11):914-922
Lectins are characterized of the carbohydrate-binding ability and play comprehensive roles in fungal physiology (e.g., defense response, development and host–pathogen interaction). Beauveria bassiana, a filamentous entomopathogenic fungus, has a lectin-like protein containing a Fruit Body_domain (BbLec1). BbLec1 could bind to chitobiose and chitin in fungal cell wall. BbLec1 proteins interacted with each other to form multimers, and translocated into eisosomes. Further, the interdependence between BbLec1 and the eisosome protein PliA was essential for stabilizing the eisosome architecture. To test the BbLec1 roles in B. bassiana, we constructed the gene disruption and complementation mutants. Notably, the BbLec1 loss resulted in the impaired cell wall in mycelia and conidia as well as conidial formation capacity. In addition, disruption of BbLec1 led to the reduced cytomembrane integrity and the enhanced sensitivity to osmotic stress. Finally, ΔBbLec1 mutant strain displayed the weakened virulence when compared with the wild-type strain. Taken together, BbLec1 traffics into eisosome and links the functionality of eisosome to development and virulence of B. bassiana.  相似文献   

15.
We studied the effect of different solid substrates on virulence of two Beauveria bassiana isolates against the browntail moth, Euproctis chrysorrhoea (L.) (Lep.: Lymantriidae). Conidia produced on wheat grains, wheat flour, wheat bran, rice flour, rice bran, rice paddy, corn flour, millet, and Sabouraud's dextrose agar with 1% yeast extract (SDAY) as control were compared. There were significant differences among these substrates for their effects on the virulence of produced conidia. Applying 107 conidia/mL of B. bassiana EUT105, produced on rice bran caused the highest (84.9%) and on rice flour, the lowest (57.6%) mortalities. Bioassay on fifth-instar larvae using aerial conidia harvested from wheat grains, rice paddy, and SDAY indicated that conidia from wheat grains had the highest virulence while those from rice paddy, the lowest.  相似文献   

16.
17.
The calcium-sensitive forms of adenylyl cyclases (AC) have been revealed in the majority of vertebrate and invertebrate animals, as well as in several representatives of unicellular organisms, including infusoria. We have found for the first time that the AC activity in the infusorian Tetrahymena pyriformis changes in the presence of calcium ions. Calcium ions at concentrations of 0.2–20 μM stimulated the activity of this enzyme, with the maximum of the stimulatory effect being observed at 2 μM Ca2+. At a concentration of 100 μM and higher, the calcium cations inhibited the AC activity. Antagonists of calmodulin W-5 and W-7 at concentrations of 20–100 μM decreased the stimulatory effect of 5 μM Ca2+, while at the higher concentrations inhibited it completely. Another calmodulin antagonist, chloropromazine, decreased the Ca2+-stimulated AC activity only at concentrations of 200–1000 μM. The stimulatory effect of serotonin, EGF, and cAMP on AC activity was enhanced in the presence of 5 μM Ca2+. The stimulatory effect of EGF, cAMP, and insulin on AC was decreased in the presence of 100 μM Ca2+, while the effect of cAMP was also observed in the presence of calmodulin antagonists (500 μM). At the same time, stimulatory effect of D-glucose did not change in the presence of Ca2+ and calmodulin antagonists. The obtained data indicate that, in the infusorian T. pyriformis, there are calcium-sensitive forms of AC that can be stimulated by EGF, cAMP, insulin, and serotonin.  相似文献   

18.
19.
Various endophytic fungi of native plants and crops are important entomopathogens. The objective of this study was to investigate the entomopathogenic action of Beauveria bassiana (Balsamo) Vuillemin, Metarhizium robertsii (Metchnikoff) Sorokin, and Isaria fumosorosea (Wize) Brown & Smith (all Ascomycota: Hypocreales) against larvae of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae) artificially introduced into Sorghum bicolor L. (Moench) (Poaceae) plants under natural environmental conditions. Sorghum bicolor is an economically important crop cultivated for grain, fiber, forage, and lately for biofuel, and S. nonagrioides is its main pest in Mediterranean areas. Young sorghum plants were inoculated with the entomopathogens by spraying in the field. Plant water status, chlorophyll concentration, photosynthesis, and transpiration were not affected. Thirty days after endophyte establishment, plants were infested with fourth instars of S. nonagrioides. The endophytes prevented 50–70% of larvae from entering stalks. Larval mortality was 70–100% and tunnel lengths were reduced by 60–87%. Larval infestation resulted in reduced electron transport capacity and net photosynthetic rate, which was ameliorated in the presence of I. fumosorosea and reversed by B. bassiana and M. robertsii. The growth of sorghum was unaffected in all treatments during the experimental period. Beauveria bassiana and M. robertsii can protect sweet sorghum from damage induced by S. nonagrioides under natural environmental conditions without affecting plant physiology and growth.  相似文献   

20.
Entomopathogenic fungi from the genera Beauveria and Metarhizium, were isolated from soil using the Galleria mellonella baiting method, and from infected white grub larvae from a diversity of cropping systems in Puebla and Guanajuato, Mexico. Isolates were identified to species level using Bloc and Elongation Factor 1-α sequence information. Although widespread, Beauveria bassiana (41 isolates) was only isolated from soil and not from infected white grubs. In contrast, Beauveria pseudobassiana (six isolates) was predominantly isolated from white grub larvae (only one isolate from soil). Haplotype analysis of B. bassiana Bloc sequences identified 25 haplotypes indicating substantial genetic diversity; neither geographical origin nor crop type explained this genetic variation. Metarhizium brunneum (three isolates) and Metarhizium robertsii (17 isolates) were also only isolated from soil, while Metarhizium anisopliae (six isolates) and Metarhizium pingshaense (four isolates) were only isolated from white grub larvae. M. anisopliae was only found infecting Paranomala species while M. pingshaense was only found infecting Phyllophaga species. Species diversity in Metarhizium was influenced by crop type. Our results showed that entomopathogenic fungi species could co-exist in the same soil ecosystem but in separate niches. The potential ecological roles of these species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号