首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

2.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

3.
贾彤  任安芝  王帅  高玉葆 《生态学报》2011,31(17):4811-4817
通过温室栽培实验,以感染两种内生真菌(Neotyphodium sibiricumNeotyphodium gansuence)和未感染内生真菌的羽茅(Achnatherum sibiricum)为实验材料,分析感染不同种内生真菌对宿主植物的生长及光合特性的影响。结果表明,感染两种内生真菌羽茅的株高和CO2补偿点显著低于未染菌的羽茅,而染菌羽茅的蒸腾速率和气孔导度显著高于未染菌羽茅,但对于感染不同种内生真菌的羽茅,无论是分蘖数与生物量的积累还是光合生理值之间均无显著差异。  相似文献   

4.
Achnatherum sibiricum (Poaceae) is a perennial bunchgrass native to the Inner Mongolia Steppe of China. This grass is commonly infected by epichloë endophytes with high-infection frequencies. Previously, we identified two predominant Neotyphodium spp., N. sibiricum and N. gansuense. In the present study, genetic diversity and structure were analyzed for the two predominant Neotyphodium spp. as well as the host grass. We obtained 103 fungal isolates from five populations; 33 were identified as N. sibiricum and 61 as N. gansuense. All populations hosted both endophytic species, but genetic variation was much higher for N. gansuense than for N. sibiricum. The majority of fungal isolates were haploid, and 13% of them were heterozygous at one SSR locus, suggesting hybrid origins of those isolates. Significant linkage disequilibrium of fungal SSR loci suggested that both fungal species primarily propagate by clonal growth through plant seeds, whereas variation in genetic diversity and the presence of hybrids in both endophytic species revealed that although clonal propagation was prevalent, occasional recombination might also occur. By comparing genetic differentiation among populations, we found around 4–7-fold greater differentiation of endophyte populations than host populations, implying more restricted gene flow of endophytes than hosts. We proposed that endophyte infection of A. sibiricum might confer the host some selective advantages under certain conditions, which could help to maintain high-endophyte-infection frequencies in host populations, even when their gene flows do not match each other. Furthermore, we suggested that the same genotype of endophyte as well as host should be confirmed if the objective of the study is to know the influence of endophyte or host genotype on their symbiotic relationship, instead of just considering whether the plant is infected by an endophyte or not, since endophytes from the same host species could exhibit high levels of genetic diversity, which is likely to influence the outcome of their symbiotic relationship.  相似文献   

5.
The needles of Picea glauca (white spruce) and Pinus strobus (white pine) trees infected with toxigenic fungal endophytes contain varying concentrations of their secondary metabolites that are toxic to either insect pests or needle pathogens. In the present study, liquid chromatography-mass spectrometric methods to determine needle concentrations of metabolites of four endophyte species were developed. The endophytes considered were a Phialocephala sp. (vermiculine) and Phialocephala scopiformis (rugulosin) from white spruce, as well as a Xylaria sp. (griseofulvin) and Lophodermium nitens (pyrenophorol) from white pine needles. To ensure that needles were infected with the associated fungal endophyte, suitable qPCR-based methods were also developed. There was a high degree of concordance between the qPCR analysis of the fungal mycelium and the LC-MS/MS quantification of the associated metabolites. Concentrations of the antifungal compounds griseofulvin and pyrenophorol were present in amounts that affect conifer needle diseases including white pine blister rust caused by Cronartium ribicola. Similarly, concentrations of the antiinsectan compounds vermiculine and rugulosin were in the range known to reduce the growth of Choristoneura fumiferana and mitigate foliage damage.  相似文献   

6.
Although endophytes of conifers have been extensively studied, few data are available on Cephalotaxaceae. We examined foliar and stem endophytes of Cephalotaxus harringtonia, within its natural range in Japan and outside its natural range in France to study the effect of geography on endophyte community composition. In Japan, rapidly growing endophytes were dominant and may have masked the real diversity, in comparison to France where most endophytes were growing slowly. Analyses of ITS rDNA revealed 104 different Blast Groups among 554 isolates. Almost no overlap between endophyte assemblages of C. harringtonia from the two countries was observed. It seems that Japanese C. harringtonia trees, which should be well adapted to their native site, would host a specific, endemic endophyte community, while trees that have been introduced recently to a foreign site, in France, should have captured existing cosmopolitan and more generalist taxa. In Japan the majority of xylariaceous taxa, which dominated the communities, were unknown and, although closely related to Asian taxa, may be new to science. Dothideomycetes were more prevalent in France. Locally, urban environment, particularly in Japan, may have introduced some perturbations in the native endophyte community of C. harringtonia, with an abundance of generalist fungi such as Nigrospora and Colletotrichum.  相似文献   

7.
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest.  相似文献   

8.
The fungal species involved in the decomposition of needle litter and their response to intraspecific genetic variation of trees are poorly known. First, we compared the needle decomposition and fungal decomposers underneath eight different Norway spruce clones in situ. This experiment revealed 60-70% loss of needle mass in two years. Although spruce clones differed considerably in growth (twofold height difference) and their needles differed in chemical composition, no significant difference was found for loss of needle mass under the spruce clones. Furthermore, the spruce clones did not affect the community structure of the fungal decomposers. Fungi inhabiting needle litter were identified by extracting ribosomal RNA (rRNA) and sequencing complementary DNA (cDNA) of internal trascribed spacer 1 (ITS1) region. The most frequent identifications were Lophodermium, Pezizales, Mycena, and Marasmius, suggesting that endophytic fungi were involved in the decomposition process. Second, we evaluated the potential of endophytes to decompose needle material in a microcosm experiment in which all other fungi than endophytes were excluded. Within 2 years, the endophytes had decomposed 35-45% of the needle mass. Sequences of Mollisia, Lophodermium, Lachnum, and Phialocephala were most frequently found in rRNA and rDNA extracted from the needles at the end of the microcosm experiment. The dominant needle endophyte in fresh, green needles was Lophodermium piceae, and this species was also found frequently in the needle material after 2 years of decay both in the field and laboratory experiments. Moreover, the relative abundance of Lophodermium-derived denaturing gradient gel electrophoresis (DGGE) bands correlated positively with the decomposition in the microcosm experiment. Hence, our results suggest a significant role of endophytic fungi, and particularly L. piceae, in the process of needle decomposition in boreal forests.  相似文献   

9.
Fungal endophytes can influence survivability and disease severity of trees. Here we characterized the endophyte community in Pinus monticola (western white pine), an important species in the northwest USA, largely decimated by pathogenic fungi. We also assessed the ability to successfully inoculate seedlings with desirable endophytes, with the long-term goal of providing a protective microbiome and added defense from pathogens. P. monticola seedlings were inoculated in the field with potential pathogen antagonists and fungi isolated from healthy mature trees. Following inoculations direct amplification and next generation sequencing were used to characterize fungal endophyte communities, and explore interspecific competition, diversity, and co-occurrence patterns in needle tissues. Negative co-occurrence patterns between inoculated fungi and potential pathogens, as well as many other species, suggest early competitive interactions. Our study explores early endophyte community assemblage and shows that fungal inoculations may influence tree growth.  相似文献   

10.
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H 2?=?0.04?0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H 2?=?0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.  相似文献   

11.
Plants simultaneously associate with multiple microbial symbionts throughout their lifetimes. To address the question of whether the effects of simultaneous symbionts are contingent on the specific identities, we conducted a greenhouse experiment manipulating the presence and identities of arbuscular mycorrhizal fungi (AMF) and fungal endophytes on the shared host grass Elymus hystrix. Each plant host was inoculated with one of two AMF species having varying effects on host growth, or a sterile soil control. Further, we used naturally occurring endophyte‐infected (E+) and uninfected (E–) individuals from two populations of the endophyte Epichloë elymi that varied in their interaction with E. hystrix. We then measured responses of plants, AMF, and fungal endophytes. Overall, we found that the combined effects of AMF and fungal endophytes on plant growth were additive, reflecting the mutualistic quality of each symbiont independently interacting with host plants. However, fungal endophyte infection differentially altered hyphal colonization of the two AMF species and the identity of the coinfecting AMF species affected fungal endophyte fitness traits. The results of this study demonstrate that the outcome of interspecific symbiotic interactions varies with partner identity such that the effects of simultaneous symbioses can not be generalized.  相似文献   

12.
To determine the role of environmental and host genetic factors in shaping fungal endophyte communities we used culturing and metabarcoding techniques to quantify fungal taxa within healthy Scots pine (Pinus sylvestris) needles in a 7-y old provenance-progeny trial replicated at three sites. Both methods revealed a community of ascomycete and basidiomycete taxa dominated by the needle pathogen Lophodermium seditiosum. Differences in fungal endophyte taxon composition and diversity indices were highly significant among trial sites. Within two sites, fungal endophyte communities varied significantly among provenances. Furthermore, the communities differed significantly among maternal families within provenances in 11/15 and 7/15 comparisons involving culture and metabarcoding data respectively. We conclude that both environmental and host genetic variation shape the fungal endophyte community of P. sylvestris needles.  相似文献   

13.
The diversity and distribution of fungal endophytes in the leaves of four podocarps (Dacrydium cupressinum, Prumnopitys ferruginea, Dacrycarpus dacrydioides, and Podocarpus totara, all Podocarpaceae) and an angiosperm (Kunzea ericoides, Myrtaceae) occurring in close stands were studied. The effects of host species, locality, and season on endophyte assemblages were investigated. Host species was the major factor shaping endophyte assemblages. The spatial separation of sites and seasonal differences played significant but lesser roles. The mycobiota of each host species included both generalist and largely host-specialised fungi. The host-specialists were often observed at low frequencies on some of the other hosts. There was no clear evidence for family-level specialisation across the Podocarpaceae. Of the 17 species found at similar frequencies on several of the podocarp species, 15 were found also on Kunzea. Many of the endophytes isolated appear to represent species of fungi not previously recognised from New Zealand.  相似文献   

14.
Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) Jesup (Max-Q, non-ergot producing endophyte) and iv) Georgia 5 (E+). Peach was included as the control. Peach supported greater (P ≤ 0.05) reproduction of M. incognita than all tall fescue cultivars. Differences in reproduction were not detected among the tall fescue cultivars and all cultivars were rated as either poor or nonhosts for M. incognita. Suppression of M. incognita reproduction was not influenced by endophyte status. In two other greenhouse experiments, host susceptibility of tall fescue grasses to two M. incognita isolates (BY-peach isolate and GA-peach isolate) did not appear to be related to fungal endophyte strain [i.e., Jesup (Max-Q; nontoxic endophyte strain) vs. Bulldog 51 (toxic endophyte strain)]. Host status of tall fescue varied with species of root-knot nematode. Jesup (Max-Q) was rated as a nonhost for M. incognita (BY-peach isolate and GA-peach isolate) and M. hapla, a poor host for M. javanica and a good host for M. arenaria. Bulldog 51 tall fescue was also a good host for M. arenaria and M. javanica, but not M. incognita. Jesup (Max-Q) tall fescue may have potential as a preplant control strategy for M. incognita and M. hapla in southeastern and northeastern United States, respectively.  相似文献   

15.
Manipulating plant microbiomes may provide control of invasive species. Invasive Phragmites australis has spread rapidly in North American wetlands, causing significant declines in native biodiversity. To test microbiome effects on host growth, we inoculated four common fungal endophytes into replicated Phragmites genotypes and monitored their growth in field and growth chamber environments. Inoculations were highly successful in the growth chamber but inoculated plants in the field were rapidly colonized by diverse endophytes from the local environment. There were significant genotype effects and minimal inoculation effects in both experiments with a significant inoculation × genotype interaction on tiller height in the field. Our results demonstrate that endophyte inoculation treatments are feasible, but repeated inoculations may be required to maintain high titer in plants subject to endophyte colonization from the local environment. Future studies should investigate a wider range of fungal endophytes to identify taxa that inhibit Phragmites and other invaders.  相似文献   

16.
Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.  相似文献   

17.
Understanding how fungal endophyte communities differ in abundance, diversity, taxonomic composition, and host affinity over the geographic ranges of their hosts is key to understanding the ecology and evolutionary context of endophyte–plant associations. We examined endophytes associated with healthy photosynthetic tissues of three closely related tree species in the Cupressaceae (Coniferales): two native species within their natural ranges [Juniperus virginiana in a mesic semideciduous forest, North Carolina (NC); Cupressus arizonica, under xeric conditions, Arizona (AZ)], and a non-native species planted in each site (Platycladus orientalis). Endophytes were recovered from 229 of 960 tissue segments and represented at least 35 species of Ascomycota. Isolation frequency was more than threefold greater for plants in NC than in AZ, and was 2.5 (AZ) to four (NC) times greater for non-native Platycladus than for Cupressus or Juniperus. Analyses of ITS rDNA for 109 representative isolates showed that endophyte diversity was more than twofold greater in NC than in AZ, and that endophytes recovered in AZ were more likely to be host-generalists relative to those in NC. Different endophyte genera dominated the assemblages of each host species/locality combination, but in both localities, Platycladus harboured less diverse and more cosmopolitan endophytes than did either native host. Parsimony and Bayesian analyses for four classes of Ascomycota (Dothideomycetes, Sordariomycetes, Pezizomycetes, Eurotiomycetes) based on LSU rDNA data (ca 1.2 kb) showed that well-supported clades of endophytes frequently contained representatives of a single locality or host species, underscoring the importance of both geography and host identity in shaping a given plant's endophyte community. Together, our data show that not only do the abundance, diversity, and taxonomic composition of endophyte communities differ as a function of host identity and locality, but that host affinities of those communities are variable as well.  相似文献   

18.
The diversity of endophytic fungi within single symptomless Norway spruce needles is described and their possible role as pioneer decomposers after needle detachment is investigated. The majority (90%) of all 182 isolates from green intact needles were identified as Lophodermium piceae. Up to 34 isolates were obtained from single needles. Generally, all isolates within single needles had distinct randomly amplified microsatellite (RAMS) patterns. Single trees may thus contain a higher number of L. piceae individuals than the number of their needles. To investigate the ability of needle endophytes to act as pioneer decomposers, surface-sterilized needles were incubated on sterile sand inoculated with autoclaved or live spruce forest humus layer. The dry weight loss of 13-17% found in needles after a 20-week incubation did not significantly differ between the sterilized and live treatments. Hence, fungi surviving the surface sterilization of needles can act as pioneer decomposers. A considerable portion of the needles remained green during the incubation. Brown and black needles, in which the weight loss had presumably taken place, were invaded throughout by single haplotypes different from L. piceae. Instead, Tiarasporella parca, a less common needle endophyte, occurred among these invaders of brown needles. Needle endophytes of Norway spruce seem thus to have different abilities to decompose host tissues after needle cast. L. piceae is obviously not an important pioneer decomposer of Norway spruce needles. The diversity of fungal individuals drops sharply when needles start to decompose. Thus, in single needles the decomposing mycota is considerably less diverse than the endophytic mycota.  相似文献   

19.
Lemons A  Clay K  Rudgers JA 《Oecologia》2005,145(4):595-604
Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant–microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant–endophyte mutualisms on ecosystem processes under field conditions.  相似文献   

20.
Selected Neotyphodium sp. endophytes are now commonly used to enhance pasture persistence and livestock productivity, with seed of perennial ryegrass and tall fescue cultivars with these selected endophytes being commercially available. In a large population of perennial ryegrass plants infected with a Neotyphodium sp. endophyte that was being grown for seed production a small percentage of inflorescences were distorted and covered with a conspicuous white mycelial growth. Within individual plants only a small number of inflorescences were affected and the amount of distortion differed between affected inflorescences. This Neotyphodium sp. is an interspecific hybrid of Epichloë typhina and Neotyphodium. lolii and like nearly all other Neotyphodium spp is symptomless in host grasses. The fungus isolated from distorted inflorescences had colonies that were identical to those isolated from symptomless inflorescences and these were characteristic of this Neotyphodium sp. This is the first report of distorted inflorescences covered with epiphytic hyphal growth on host grasses infected with an interspecific hybrid Neotyphodium sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号