首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolites and phytotoxins produced by the phytopathogenic fungus Alternaria brassicicola (Schwein.) Wiltshire, as well as the phytoalexins induced in host plants, were investigated. Brassicicolin A emerged as the most selective phytotoxic metabolite produced in liquid cultures of A. brassicicola and spirobrassinin as the major phytoalexin produced in infected leaves of Brassica juncea (whole plants). In detached infected leaves of B. juncea, the main component was N′-acetyl-3-indolylmethanamine, the product of detoxification of the phytoalexin brassinin by A. brassicicola. In addition, the structure elucidation of three hitherto unknown metabolites having a fusicoccane skeleton was carried out and the antifungal activity of several plant defenses against A. brassicicola was determined.  相似文献   

2.
Pedras MS  Jha M  Okeola OG 《Phytochemistry》2005,66(22):2609-2616
The impact of the phytoalexins camalexin and spirobrassinin on brassinin detoxification by Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.], a pathogenic fungus prevalent on crucifers, was investigated. Brassinin is a plant metabolite of great significance due to its dual role both as an effective phytoalexin and as an early biosynthetic precursor of the majority of the phytoalexins produced by plants of the family Brassicaceae (Cruciferae). The rate of detoxification of brassinin in cultures of L. maculans increased substantially in the presence of camalexin, whereas spirobrassinin did not appear to have a detectable effect. In addition, the brassinin detoxifying activity of cell-free extracts obtained from cultures incubated with camalexin was substantially higher than that of control cell-free extracts or cultures incubated with spirobrassinin, and correlated positively with brassinin oxidase activity. The discovery of a potent synthetic modulator of brassinin oxidase activity, 3-phenylindole, and comparison with the commercial fungicide thiabendazole is also reported. The overall results indicate that brassinin oxidase production is induced by camalexin and 3-phenylindole but not by spirobrassinin or thiabendazole. Importantly, our work suggests that introduction of the camalexin pathway into plants that produce brassinin might make these plants more susceptible to L. maculans.  相似文献   

3.
Pedras MS  Adio AM 《Phytochemistry》2008,69(4):889-893
Investigation of phytoalexin production using abiotic elicitation showed that the phytoalexin rapalexin A was produced by both Thellungiella halophila and Arabidopsis thaliana, but while A. thaliana produced camalexin, T. halophila produced wasalexins A and B and methoxybrassenin B. Considering that the genome of T. halophila is being sequenced currently and that the wasalexin pathway present in T. halophila is expected to involve a number of genes also present in Brassica species, our discovery should facilitate the isolation of genes involved in biosynthetic pathways of phytoalexins of the most economically important crucifer species.  相似文献   

4.
The phytoalexins, brassinin, 1-methoxybrassinin and cyclobrassinin, were metabolized by the stem rot fungus Sclerotinia sclerotiorum into their corresponding glucosyl derivatives displaying no detectable antifungal activity. Importantly, co-incubation of S. sclerotiorum with camalexins, various phytoalexin analogs, and brassinin indicated that a synthetic camalexin derivative could slow down substantially the rate of brassinin detoxification. Furthermore, inducible brassinin glucosyltransferase (BGT) activity was detected in crude cell-free extracts of S. sclerotiorum. BGT activity was induced by the phytoalexin camalexin, and the brassinin analogs methyl tryptamine dithiocarbamate and methyl 1-methyltryptamine dithiocarbamate. The overall results suggest that the fungus S. sclerotiorum in its continuous adaptation and co-evolution with brassinin producing plants, has acquired efficient glucosyltransferase(s) that can disarm some of the most active plant chemical defenses.  相似文献   

5.
Liu H  Yang Z  Yang M  Shen S 《Plant science》2011,181(6):660-666
  相似文献   

6.
The proteomic approach has proven to be an useful tool for understanding insect diapause processes. Using 2D gel electrophoresis and matrix assisted laser/desorption ionization (MALDI) time of flight (TOF), we identified 24 proteins in the head of Helicoverpa armigera pupae with diverse functional characteristics, including cytoskeleton proteins, heat-shock proteins, insect development regulation factors, ATPases, proteins regulating signal pathway and enzymes involved in metabolism, etc. A proteomic comparison between nondiapausing and diapausing pupae revealed three proteins that were present only in nondiapausing pupae, and six proteins represented ≥2.0-fold or ≤0.5-fold changes. The differentially expressed proteins, including heat-shock protein 90, chitin deacetylase, alpha-tubulin and transitional endoplasmic reticulum ATPase, etc. were reported for the first time in H. armigera. Identification of these proteins will enable us to further characterize the regulated functions of diapause in this important species.  相似文献   

7.
Brassinin is a phytoalexin produced by plants from the family Brassicaceae that displays antifungal activity against a number of pathogens of Brassica species, including Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.] and L. biglobosa. The interaction of a group of isolates of L. maculans virulent on brown mustard (Brassica juncea) with brassinin was investigated. The metabolic pathway for degradation of brassinin, the substrate selectivity of the putative detoxifying hydrolase, as well as the antifungal activity of metabolites and analogs of brassinin are reported. Brassinin hydrolase activity was detectable only in cell-free homogenates resulting from cultures induced with brassinin, N'-methylbrassinin, or camalexin. The phytoalexin camalexin was a substantially stronger inhibitor of these isolates than brassinin, causing complete growth inhibition at 0.5mM.  相似文献   

8.
为了建立长双歧杆菌BBMN68蛋白质图谱,采用双向电泳的方法建立了2-D参考图谱,通过MALDI-TOF/MS质谱鉴定和数据库搜索,鉴定到206个蛋白质(占长双歧杆菌BBMN68基因预测总蛋白的11.4%)。通过2-D胶分析,共有800±15(对数期)和800±20(稳定期)个蛋白质,其中282个蛋白点成功鉴定,代表206个不同的蛋白质。另外,分析了实验鉴定蛋白质的等电点和分子量,蛋白功能,密码子偏好性,蛋白质疏水性以及蛋白质细胞定位的分析。研究结果为长双歧杆菌的比较蛋白质组学研究提供了参考图谱和蛋白质基础信息数据。  相似文献   

9.
The Streptococcus genus includes the pathogenic species Streptococcus mutans, the main responsible of dental caries, and the safe microorganism Streptococcus thermophilus, used for the manufacture of dairy products. These facultative anaerobes control the levels of reactive oxygen species (ROS) and indeed, both S. mutans and S. thermophilus possess a cambialistic superoxide dismutase, the key enzyme for a preventive action against ROS. To evaluate the properties of a crucial mechanism for repairing ROS damages, the molecular and functional characterization of the thioredoxin system in these streptococci was investigated. The putative genes encoding its protein components in S. mutans and S. thermophilus were analysed and the corresponding recombinant proteins were purified. A single thioredoxin reductase was obtained from either S. mutans (SmTrxB) or S. thermophilus (StTrxB1), whereas two thioredoxins were prepared from either S. mutans (SmTrxA and SmTrxH1) or S. thermophilus (StTrxA1 and StTrxA2). Both SmTrxB and StTrxB1 reduced the synthetic substrate DTNB in the presence of NADPH, whereas only SmTrxA and StTrxA1 accelerated the insulin reduction in the presence of DTT. To reconstitute an in vitro streptococcal thioredoxin system, the combined activity of the thioredoxin components was tested through the insulin precipitation in the absence of DTT. The assay functions with a combination of SmTrxB or StTrxB1 with either SmTrxA or StTrxA1. These results suggest that the streptococcal members of the thioredoxin system display a direct functional interaction between them and that these protein components are interchangeable within the Streptococcus genus. In conclusion, our data prove the existence of a functioning thioredoxin system even in these microaerophiles.  相似文献   

10.
The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morphologically similar taxa. This study aimed to assess if strains of four closely-related plant pathogens, i.e., accurately Alternaria dauci (ten strains), Alternaria porri (six), Alternaria solani (ten), and Alternaria tomatophila (ten) could be identified using multilocus phylogenetic analysis and Matrix-Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) profiling of proteins. Phylogenetic analyses were performed on three loci, i.e., the internal transcribed spacer (ITS) region of rRNA, and the glyceraldehyde-3-phosphate dehydrogenase (gpd) and Alternaria major antigen (Alt a 1) genes. Phylogenetic trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades. However, none provided significant bootstrap support for all four species, which could only be achieved when results for the three loci were combined. MALDI-TOF-based dendrograms showed three major clusters. The first comprised all A. dauci strains, the second included five strains of A. porri and one of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely-related plant pathogens.  相似文献   

11.
Animal trypanosomosis is a major constraint to livestock productivity in the tropics and has a significant impact on the life of millions of people globally (mainly in Africa, South America and south-east Asia). In Africa, the disease in livestock is caused mainly by Trypanosoma congolense, Trypanosoma vivax, Trypanosoma evansi and Trypanosoma brucei brucei. The extracellular position of trypanosomes in the bloodstream of their host requires consideration of both the parasite and its naturally excreted-secreted factors (secretome) in the course of pathophysiological processes. We therefore developed and standardised a method to produce purified proteomes and secretomes of African trypanosomes. In this study, two strains of T. congolense exhibiting opposite properties of both virulence and pathogenicity were further investigated through their secretome expression and its involvement in host-parasite interactions. We used a combined proteomic approach (one-dimensional SDS-PAGE and two-dimensional differential in-gel electrophoresis coupled to mass spectrometry) to characterise the whole and differentially expressed protein contents of secretomes. The molecular identification of differentially expressed trypanosome molecules and their correlation with either the virulence process or pathogenicity are discussed with regard to their potential as new diagnostic or therapeutic tools against animal trypanosomosis.  相似文献   

12.
Microbial oil production from sulphuric acid treated rice straw hydrolysate (SARSH) by Trichosporon fermentans was performed for the first time. Fermentation of SARSH without detoxification gave a poor lipid yield of 1.7 g/l, which was much lower than the result with glucose or xylose as the single carbon source (13.6 g/l or 9.9 g/l). The detoxification pretreatment, including overliming, concentration, and adsorption by Amberlite XAD-4 improved the fermentability of SARSH significantly by removing the inhibitors in SARSH. A total biomass of 28.6 g/l with a lipid content of 40.1% (corresponding to a lipid yield of 11.5 g/l) could be achieved after cultivation of T. fermentans on the detoxified SARSH for 8 days. Moreover, besides SARSH, T. fermentans could also utilize mannose, galactose, or cellobiose, in hydrolysates of other natural lignocellulosic materials as the single carbon source to grow and accumulate lipid with a high yield (at least 10.4 g/l). Hence, it is a promising strain for microbial oil production and thus biodiesel preparation from agro-industrial residues, especially lignocellulosic materials.  相似文献   

13.
Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens–mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process.  相似文献   

14.
Loss-of-function mutation of the PTEN-induced kinase 1 (PINK1) gene is a common cause of early-onset Parkinson’s disease (PD). Glutathione S-transferase omega (GSTO) is a phase II detoxification enzyme that conjugates targets to glutathione, and has recently been implicated in parkin-associated PD. In this study, we found Drosophila GstO2 to be a novel genetic suppressor of the PINK1 loss-of-function mutant. We show that GstO2A expression is reduced in PINK1 mutants. Moreover, the upregulation of GstO2A restores muscle degeneration and dopaminergic neuron loss in PINK1 mutants. Given the previous data of a reduced expression of GstO2A and decreased glutathionylation of ATP synthase β subunit in parkin or PINK1 mutants, these results suggest that the function of GstO2 is regulated by the PINK1/parkin pathway and that GstO2 also has a protective role in PINK1-associated PD.  相似文献   

15.
16.
In this study, S-allele diversity of eight wild and two commercial species of the Cerasus subgenus in Iran was investigated using two primer pairs. A high level of S-allele polymorphism was detected among and within the species evaluated. Furthermore, most of wild species showed 2–4 alleles based on S-allele primers and may be considered as tetraploid. Sweet cherry cultivars, Siah-Mashhad, Siah-Shabestar, Takdaneh-Mashhad, Siah-Daneshkadeh and Protiva showed S3S12, S3S12, S3S12, S3S5 and S3S4 combinations, respectively, allele S3 showing the highest frequency. Three Iranian sweet cherry cultivars had the same allelic combination (S3S12) that the same ancestor in genealogy of these cultivars may explain the loss of diversity observed at the S-locus. Wild cherry (mazzard) accessions showed wide range of alleles such as S1, S2, S7, S14 and S20 and unknown alleles, while sour cherries showed S6, S9, S13 and S27 alleles. In conclusion, the conservation of these highly diverse native species of Iranian wild Cerasus germplasm is recommended for future breeding activity.  相似文献   

17.
Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract has a strong antibacterial activity against the bacterial pathogen Streptococcus pyogenes. Our previous studies indicated that the bactericidal activity of rhodomyrtone might involve intracellular targets. In the present studies we followed a proteomics approach to investigate the mode of action of rhodomyrtone on S. pyogenes. For this purpose, S. pyogenes was cultivated in the presence of 0.39 μg/ml rhodomyrtone, which corresponds to 50% of the minimal inhibitory concentration. The results show that the amounts of various enzymes associated with important metabolic pathways were strongly affected, which is consistent with the growth-inhibiting effect of rhodomyrtone. Additionally, cells of S. pyogenes grown in the presence of rhodomyrtone produced reduced amounts of known virulence factors, such as the glyceraldehyde-3-phosphate dehydrogenase, the CAMP factor, and the streptococcal pyrogenic exotoxin C. Taken together, these findings indicate that rhodomyrtone has both antimicrobial and anti-infective activities, which make it an interesting candidate drug.  相似文献   

18.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

19.
Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5 mM dopachrome the oxygen consumption rate of TrT on 8 mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone.  相似文献   

20.
Cholangiocarcinoma (CCA), or cancer of the bile ducts, is primarily associated with infection with the liver fluke Opisthorchis viverrini in northeast Thailand. The disease is associated with late presentation, poses challenges for diagnosis and has a high mortality rate - features that highlight the need for tumor markers. At present, there are no specific tumor markers that can indicate the early stages and status of CCA. Proteomic analysis of the proteins expressed on the surface of tumor cells is particularly difficult since proteome-wide analysis of surface membrane proteins has thus far been hampered by the lack of effective strategies to profile hydrophobic membrane proteins. In this study, a sequential protein extraction was utilized to overcome this problem. Membrane protein was extracted from four CCA cell lines with different tumor forming capabilities. The non-tumor H69 biliary cell line was used as a control. Two-dimensional-PAGE followed by MALDI-TOF-MS was used to identify differentially expressed proteins. Among 20 up-regulated membrane proteins identified in the CCA cell lines was ANXA2, a participant in tumor invasion and metastasis in other cancers. Accordingly, ANXA2 was verified in human subjects by probing, using a commercial anti-mouse monoclonal antibody and a tissue microarray of CCA (301 diagnosed cases), where it was found to associate with one of several tumor progression stages as reflected by lymphatic invasion (P = 0.014) and metastasis (P = 0.026). Patients with high expression of ANXA2 had a significantly shorter survival time (P = 0.011). ANXA2 expression in tumors may be useful for predicting the poor outcome of CCA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号