首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.  相似文献   

2.
Vibrio vulnificus was isolated in 1996 from 2 disease outbreaks on a Danish eel farm which used brackish water. A characteristic clinical sign was extensive, deep muscle necrosis in the head region. V. vulnificus was isolated from kidney, mucus, spleen, gill and intestine of diseased eels. Thirty-two isolates were examined phenotypically and serologically for pathogenicity to eels and for correlation to ribotype and plasmid profile. Biochemically, the isolates showed properties similar to those described previously for eel-pathogenic strains of V. vulnificus, with the exception of indole production. Virulence was evaluated by LD50 (the 50% lethal dose), which ranged from < 9.4 x 10(3) to 2.3 x 10(5) CFU (colony-forming units) per fish. The isolates which were lethal for eels showed identical ribotypes and serotypes. A relationship between certain plasmids and virulence was not found. A serotyping system based on lipopolysaccharide (LPS)-associated O antigen type and on carbohydrate capsule antigens showed that the eel-virulent isolates shared a common LPS-based homogeneous O serogroup and a capsule antigen. V. vulnificus serovar O4 and capsule type 9 was identical serologically to the Japanese isolate ATCC 33149 and was the agent responsible for the disease outbreaks that occurred on the Danish eel farm. Despite absence of antibiotic resistance, treatment had little effect and disease reoccurred.  相似文献   

3.
Genetic relationships among 132 strains of Vibrio vulnificus (clinical, environmental, and diseased-eel isolates from different geographic origins, as well as seawater and shellfish isolates from the western Mediterranean coast, including reference strains) were analyzed by random amplified polymorphic DNA (RAPD) PCR. Results were validated by ribotyping. For ribotyping, DNAs were digested with KpnI and hybridized with an oligonucleotide probe complementary to a highly conserved sequence in the 23S rRNA gene. Random amplification of DNA was performed with M13 and T3 universal primers. The comparison between ribotyping and RAPD PCR revealed an overall agreement regarding the high level of homogeneity of diseased-eel isolates in contrast to the genetic heterogeneity of Mediterranean isolates. The latter suggests the existence of autochthonous clones present in Mediterranean coastal waters. Both techniques have revealed a genetic proximity among Spanish fish farm isolates and a close relationship between four Spanish eel farm isolates and some Mediterranean isolates. Whereas the differentiation within diseased-eel isolates was only possible by ribotyping, RAPD PCR was able to differentiate phenotypically atypical isolates of V. vulnificus. On the basis of our results, RAPD PCR is proposed as a better technique than ribotyping for rapid typing in the routine analysis of new V. vulnificus isolates.  相似文献   

4.
Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed that V. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.  相似文献   

5.
Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains.  相似文献   

6.
Genetic relationships among 62 Vibrio vulnificus strains of different geographical and host origins were analyzed by multilocus enzyme electrophoresis (MLEE), random amplification of polymorphic DNA (RAPD), and sequence analyses of the recA and glnA genes. Out of 15 genetic loci analyzed by MLEE, 11 were polymorphic. Cluster analysis identified 43 distinct electrophoretic types (ETs) separating the V. vulnificus population into two divisions (divisions Ι and ΙΙ). One ET (ET 35) included all indole-negative isolates from diseased eels worldwide (biotype 2). A second ET (ET 2) marked all of the strains from Israel isolated from patients who handled St. Peter's fish (biotype 3). RAPD analysis of the 62 V. vulnificus isolates identified 26 different profiles separated into two divisions as well. In general, this subdivision was comparable (but not identical) to that observed by MLEE. Phylogenetic analysis of 543 bp of the recA gene and of 402 bp of the glnA gene also separated the V. vulnificus population into two major divisions in a manner similar to that by MLEE and RAPD. Sequence data again indicated the overall subdivision of the V. vulnificus population into different biotypes. In particular, indole-negative eel-pathogenic isolates (biotype 2) on one hand and the Israeli isolates (biotype 3) on the other tended to cluster together in both gene trees. None of the methods showed an association between distinct clones and human clinical manifestations. Furthermore, except for the Israeli strains, only minor clusters comprising geographically related isolates were observed. In conclusion, all three approaches (MLEE, RAPD, and DNA sequencing) generated comparable but not always equivalent results. The significance of the two divisions (divisions Ι and ΙΙ) still remains to be clarified, and a reevaluation of the definition of the biotypes is also needed.  相似文献   

7.
The existence of strains of Vibrio vulnificus serovar E that are avirulent for eels is reported in this work. These isolates were recovered from water and oysters and differed from eel virulent strains in (i) fermentation and utilization of mannitol, (ii) ribotyping after HindIII digestion, and (iii) susceptibility to eel serum. Lipopolysaccharide of these strains lacked the highest molecular weight immunoreactive bands, which are probably involved in serum resistance.  相似文献   

8.
A total of 85 isolates of Vibrio vulnificus were characterized by ribotyping with a probe complementary to 16S and 23S rRNA of Escherichia coli and by randomly amplified polymorphic DNA-PCR (RAPD-PCR) with a 10-mer oligonucleotide primer. The RAPD-PCR results were scanned, and the images were analyzed with a computer program. Ribotype membranes were evaluated visually. Both the ribotyping and the RAPD-PCR results showed that the collection of strains was genetically very heterogeneous. Ribotyping enabled us to differentiate U.S. and Danish strains and V. vulnificus biotypes 1 and 2, while the RAPD-PCR technique was not able to correlate isolates with sources or to differentiate the two biotypes, suggesting that ribotyping is useful for typing V. vulnificus strains whereas RAPD-PCR profiles may subdivide ribotypes. Two Danish clinical biotype 2 strains isolated from fishermen who contracted the infection cleaning eels belonged to the same ribotype as three eel strains (biotype 2), providing further evidence that V. vulnificus biotype 2 is an opportunistic pathogen for humans. One isolate (biotype 2) from Danish coastal waters also showed the same ribotype as the eel strains. This is, to our knowledge, the first time the isolation of V. vulnificus biotype 2 from coastal waters has been described.  相似文献   

9.
We performed an epidemiological study on Salmonella isolated from raw plant-based feed in Spanish mills. Overall, 32 different Salmonella serovars were detected. Despite its rare occurrence in humans and animals, Salmonella enterica serovar California was found to be the predominant serovar in Spanish feed mills. Different typing techniques showed that isolates of this serovar were genetically closely related, and comparative genomic hybridization using microarray technology revealed 23 S. enterica serovar Typhimurium LT2 gene clusters that are absent from serovar California.  相似文献   

10.
Field testing of a vaccine against eel diseases caused by Vibrio vulnificus   总被引:1,自引:0,他引:1  
The field results of a vaccination programme against Vibrio vulnificus serovar E (biotype 2) in a Spanish eel farm are reported. A total of 9.5 million glass eels were vaccinated from January 1998 to March 2000 by prolonged immersion followed by 2 subsequent reimmunisations after 12 to 14 and 24 to 28 d, respectively. The acquired protection and the immune response against serovar E were estimated over a period of 6 mo after vaccination. A similar vaccination schedule was conducted with elvers in a Danish eel farm. In this case, the acquired protection and the immune response against serovar E and the new eel-pathogenic serovars, recently described in Denmark, were evaluated over a short term. The overall results show that the vaccine against V. vulnificus serovar E induces a satisfactory protective immunity during the main growth period of eels (around 6 mo) with a relative percentage survival of 62 to 86% and protects them against the new eel-pathogenic serovars. Vaccination of eels by immersion seems to be the best strategy to prevent diseases caused by V. vulnificus.  相似文献   

11.
Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico.  相似文献   

12.
In Vibrio vulnificus, virulence for eels is associated with serovar E strains. In this study, we investigated some biological properties of purified lipopolysaccharides (LPSs) from serovar E and non-serovar E strains. Purified LPSs retained their O-polysaccharidic side chains and did not show any differences that could be related to host specificity, except for serological differences.  相似文献   

13.
During the unusually warm summer in Denmark in 1994, 11 clinical cases of Vibrio vulnificus infection were reported. These reports initiated an investigation of the occurrence of V. vulnificus biotypes in Danish marine environments. Samples of coastal water, sediment, shellfish, and wild fish were analyzed by preenrichment in alkaline peptone water amended with polymyxin B (2.0 × 104 U/liter) followed by streaking onto modified cellobiose-polymyxin B-colistin agar. V. vulnificus-like colonies were tested with a V. vulnificus-specific DNA probe. Low densities of V. vulnificus were detected in water (0.8 to 19 CFU/liter) from June until mid-September and in sediment (0.04 to >11 CFU/g) from July until mid-November. The presence of V. vulnificus was strongly correlated with water temperature. However, we isolated V. vulnificus from water from a mussel farm at a lower temperature than previously reported (7°C). In 1 of the 13 locations studied, V. vulnificus was found in mussels in 7 of 17 samples analyzed; this is the first report of V. vulnificus in European shellfish. V. vulnificus was also isolated from gills, intestinal contents, and mucus from wild fish. Although biotyping of 706 V. vulnificus strains isolated during our investigations revealed that the majority of the strains (99.6%) belonged to biotype 1, biotype 2 was detected in seawater at a low frequency (0.4%). Our findings provide further evidence that seawater can serve as a reservoir and might facilitate spread of V. vulnificus biotype 2 to eels, with subsequent spread to persons handling eels. In conclusion, our data demonstrate that V. vulnificus is ubiquitous in a temperate marine environment and that V. vulnificus biotype 2 is not strictly confined to eels.  相似文献   

14.
Fifty-six human and 24 adult dairy cattle isolates of Salmonella enterica serovar Typhimurium from a single county in California were compared using ribotyping, insertion sequence typing (IS200), pulsed-field gel electrophoresis, plasmid typing, phage typing, and antimicrobial resistance testing. The majority of the isolates fell into one of two groups which were phage types DT104 and DT193. Combining the information from all typing methods, a total of 45 different “clusters” were defined, with 35 of those including only a single isolate. The library of isolates had a high degree of variability, but antibiotic resistance and plasmid typing each defined single clusters in which human or bovine isolates predominated (χ2, P < 0.05).  相似文献   

15.
Vulnivaccine, a vaccine against vibriosis caused by Vibrio vulnificus serovar E (formerly biotype 2), confers acceptable levels of protection to eels after its administration by prolonged immersion in three doses. Recently, a new pathogenic serovar, named serovar A, has been isolated from vaccinated eels in a Spanish freshwater eel farm. The main objective of this work was to design a bivalent vaccine, and to study its effectiveness against the two pathogenic serovars. With this aim, eels weighing around 20 g were immunised with the bivalent vaccine by oral and anal intubation, intraperitoneal injection (i.p.) and prolonged immersion. The overall results indicated that: (i) the new vaccine delivered by oral and anal intubation induced protection levels higher than 80%, to that achieved after i.p. vaccination; (ii) oral and anal vaccination induced a significant systemic and mucosal immune response; (iii) the protection after vaccination by whichever routes was related to antibody titres in plasma; (iv) mucosal and systemic compartments showed different kinetics of antibody production; (v) evidence for passive transfer of antibodies from plasma to gut mucus were found after i.p. and anal vaccination, and finally, (vi) vaccination did not enhance the production of lysozyme, in plasma or mucus. In conclusion, this new vaccine is effective in protecting eels against vibriosis caused by the two eel-pathogenic serovars of V. vulnificus, the oral delivery system is a promising way which may be used in intensive culture facilities during the whole growth period of eels.  相似文献   

16.

Background

Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species.

Results

In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5′-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218.

Conclusion

We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.  相似文献   

17.
The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.  相似文献   

18.
Isolation of Yersinia ruckeri Bacteriophages   总被引:1,自引:0,他引:1       下载免费PDF全文
Eight bacteriophages effective against Yersinia ruckeri, the enteric redmouth disease bacterium, were isolated. Phage YerA41, a tailed icosahedral virus isolated from sewage enrichments, lysed 34 of 35 strains of Y. ruckeri serovar I, but was inactive against 15 strains belonging to three other serological groups. Six other phages lysed strains of serovars II, V, and I′, a subgroup of serovar I. YerL62, a phage obtained by mitomycin C induction, was specific for one of three serovar V strains. These bacteriophages, particularly YerA41, have potential value for fish disease diagnostic work.  相似文献   

19.
Vibrio vulnificus, a gram‐negative halophilic estuarine bacterium, is an opportunistic human pathogen that causes rapidly progressive fatal septicemia and necrotizing wound infection. This species also causes hemorrhagic septicemia called vibriosis in cultured eels. It has been proposed that a range of virulence factors play roles in pathogenesis during human and/or eel infection. Among these factors, a metalloprotease (V. vulnificus protease [VVP]) and a cytolytic toxin (V. vulnificus hemolysin [VVH]) are of significant importance. VVP elicits the characteristic edematous and hemorrhagic skin damage, whereas VVH exhibits powerful hemolytic and cytolytic activities and contributes to bacterial invasion from the intestine to the blood stream. In addition, a few V. vulnificus strains isolated from diseased eels have recently been found to produce a serine protease designated as V. vulnificus serine protease (VvsA) instead of VVP. Similarly to VVP, VvsA may possess various toxic activities such as collagenolytic, cytotoxic and edema‐forming activity. In this review, regulation of V. vulnificus VVP, VVH and VvsA is clarified in terms of expression at the mRNA and protein levels. The explanation is given on the basis of the quorum sensing system, which is dependent on bacterial cell density. In addition, the roles of environmental factors and global regulators, such as histone‐like nucleoid structuring protein, cyclic adeno monophosphate receptor protein, RpoS, HlyU, Fur, ToxRS, AphB and LeuO, in this regulation are outlined. The cumulative impact of these regulatory systems on the pathogenicity of V. vulnificus is here delineated.  相似文献   

20.
A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA''s Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号