首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since genetic damage induced by ethanol exposure is controversial and incomplete and because germ and somatic cells constitute bioindicators for monitoring reproductive toxicity and genotoxic actions of ethanol consumption, the purpose of the present investigation was to evaluate morphological sperm, oocyte alterations and parental genotoxic effects after sub-chronic ethanol intake in the CF-1 outbred mouse strain. Ethanol 10% was administered to CF-1 adult male (treated males, TM) and female (treated females, TF) mice for 27 days, whereas water was given to controls from both sexes too (CM and CF). Post-treatment micronucleus frequency (MN-PCE/1,000/mouse) and gamete morphology were evaluated. To test whether change of female reproductive status results in maternal genotoxicity, CF-1 females received ethanol 10% (exposed group, periconceptionally treated females (PTF)) or water (control group, pregnant control females (PCF)) in drinking water for 17 days previous and up to 10 days of gestation. TM had a high percentage of abnormal spermatozoa vs CM (p < 0.001) and elevated parthenogenetic activated oocyte frequency appeared in TF vs CF (p < 0.001). Sub-chronic ethanol ingestion induced increased MN frequency in TM and TF (p < 0.01). In PTF, where blood alcohol concentrations were between 19–28 mg/dl, very significantly increased MN frequency was found vs PCF (p < 0.01), whereas MN values were similar to TF. These results show that sub-chronic alcohol ingestion in CF-1 mice produces sperm head dysmorphogenesis and oocyte nuclear anomalies, suggesting that morphological abnormalities in germ cells are probably related to parental genotoxicity after ethanol consumption.  相似文献   

2.
In vitro studies have suggested that nanosized titanium dioxide (TiO(2)) is genotoxic. The significance of these findings with respect to in vivo effects is unclear, as few in vivo studies on TiO(2) genotoxicity exist. Recently, nanosized TiO(2) administered in drinking water was reported to increase, e.g., micronuclei (MN) in peripheral blood polychromatic erythrocytes (PCEs) and DNA damage in leukocytes. Induction of micronuclei in mouse PCEs was earlier also described for pigment-grade TiO(2) administered intraperitoneally. The apparent systemic genotoxic effects have been suggested to reflect secondary genotoxicity of TiO(2) due to inflammation. However, a recent study suggested that induction of DNA damage in mouse bronchoalveolar lavage (BAL) cells after intratracheal instillation of nanosized or fine TiO(2) is independent of inflammation. We examined here, if inhalation of freshly generated nanosized TiO(2) (74% anatase, 26% brookite; 5 days, 4 h/day) at 0.8, 7.2, and (the highest concentration allowing stable aerosol production) 28.5 mg/m(3) could induce genotoxic effects in C57BL/6J mice locally in the lungs or systematically in peripheral PCEs. DNA damage was assessed by the comet assay in lung epithelial alveolar type II and Clara cells sampled immediately following the exposure. MN were analyzed by acridine orange staining in blood PCEs collected 48 h after the last exposure. A dose-dependent deposition of Ti in lung tissue was seen. Although the highest exposure level produced a clear increase in neutrophils in BAL fluid, indicating an inflammatory effect, no significant effect on the level of DNA damage in lung epithelial cells or micronuclei in PCEs was observed, suggesting no genotoxic effects by the 5-day inhalation exposure to nanosized TiO(2) anatase. Our inhalation exposure resulted in much lower systemic TiO(2) doses than the previous oral and intraperitoneal treatments, and lung epithelial cells probably received considerably less TiO(2) than BAL cells in the earlier intratracheal study.  相似文献   

3.
This study was undertaken to investigate the genotoxic interactions between the common environmental pollutants: arsenic (As), cadmium (Cd) and benzo(a)pyrene (BaP), which are known to be human carcinogens. C57BL/6J/Han mice were pre-treated with 100mg cadmium chloride (Cd(2+))/L or 50mg sodium arsenite (As(3+))/L in drinking water for 7 days and then given a single dose of 200mg BaP/kg bw by intra-peritoneal injection. A third group of mice did not receive the pre-treatment and was given BaP alone. Mice were sacrificed before or at 12, 24, 48 or 72h after BaP administration. Chromosome damage in bone-marrow cells was assessed by use of the micronucleus test. The study revealed that BaP induced a statistically significant increase in micronucleus (MN) frequency at 48h after administration. In animals exposed to Cd in drinking water no enhancement of genotoxicity was observed compared with the control group that was given tap water only. In Cd/BaP co-exposed animals, the MN frequency at respective time points did not differ from that for the animals exposed solely to BaP. A statistically higher MN frequency was found in bone marrow of animals exposed to As compared with controls that received tap water (0.92+/-0.29% versus 0.38+/-0.13%, respectively). This effect was even more pronounced after combined exposure to As and BaP. In the co-exposed animals, significantly elevated levels of MN were detected in samples examined at 12, 24 and 48h after BaP administration, compared with animals receiving BaP alone (1.14+/-0.31%, 1.26+/-0.3% and 2.02+/-0.45% versus 0.44+/-0.13%, 0.44+/-0.11% and 1.04+/-0.44%, respectively). These findings imply strong interactions between As and BaP, but not between Cd and BaP, in inducing DNA damage in polychromatic erythrocytes in mouse bone-marrow.  相似文献   

4.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67 ± 19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations ≥100 μM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations ≥300 μM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by DL-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (≥1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

5.
Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0 mg/L, induced a 1.9–3.9-fold increase in MN frequency and a 1.5–1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P < 0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15–80% decrease in mitotic indices (MI), but at the lowest concentration (0.005 mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.  相似文献   

6.
Furan is found in various food items and is cytotoxic and carcinogenic in the liver of rats and mice. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). In view of the multifunctional electrophilic reactivity of BDA, adduct formation with protein and DNA may explain some of the toxic effects. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for BDA. We investigated BDA generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity in L5178Y tk+/− mouse lymphoma cells using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay, using 4-h incubation periods. Cytotoxicity was remarkable: cell viability at concentrations ≥50 μM was reduced to <50%. In the dose range up to 25 μM, viability was >90%. Measures of comet-tail length and thymidine–kinase mutant frequency were increased 1.6- and 2.4-fold above control, respectively. Analysis of three fully independent replicates with a linear mixed-effects model showed a highly significant increase with concentration for both endpoints. Compared to methyl methanesulfonate used as a positive control, BDA was of similar potency with respect to genotoxicity, but it was much more cytotoxic. Furan added to cell cultures at doses that resulted in time-averaged effective concentrations of up to 3100 μM was neither cytotoxic nor genotoxic. A potential cross-linking activity of BDA was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pre-treatment with BDA. In contrast to the effect of the positive control glutaraldehyde, BDA treatment did not reduce the comet tail length. On the contrary, an increase was observed at ≥100 μM BDA, which was attributable to early apoptotic cells. Although BDA was found to be a relatively potent genotoxic agent in terms of the concentration necessary to double the background measures, cytotoxicity strongly limited the concentration range that produced interpretable results. This may explain some of the inconclusive results and indicates that non-genotoxic effects must be taken into account in the discussion of the modes of toxic and carcinogenic action of furan.  相似文献   

7.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

8.
Genotoxicity of drinking water from three Korean cities   总被引:4,自引:0,他引:4  
Park JH  Lee BJ  Lee SK  Kim K  Lee KH  Che JH  Kang KS  Lee YS 《Mutation research》2000,466(2):173-178
Organic content of drinking tap water from Seoul, Taejon, and Suwon was extracted with an XAD-2 resin column and organic solvents. Four doses of the extract equivalent to 4, 2, 1, and 0.5 l water were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 in the presence and absence of S9 mix. The organic extracts of the water from all three cities were mutagenic in TA 98 without S9 mix and in TA 100 with and without S9 mix. The highest number of revertants per plate was found in the absence of S9 mix. Three doses of the extract (equivalent to 22, 11, and 3.7 l water) were also tested in the bone marrow micronucleus test using BDF1 mice. At the highest dose, a significant increase of the micronucleus frequency was observed. The time required to be on the effect, however, varied with the source of the water. Our results indicate that the drinking tap waters from the three cities were genotoxic clearly in the bacterial test and also in the in vivo assay with mice. As we found no genotoxicity of the source water as seen in a previous study, it is likely that the chlorination process leads to the genotoxicity of the tap water.  相似文献   

9.
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25–200 μM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50 μM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO, were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations ≥50 μM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.  相似文献   

10.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH > 13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague–Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3–6 and 22–26 h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20 mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology.Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40 min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

11.
Kim HR  Kim MJ  Lee SY  Oh SM  Chung KH 《Mutation research》2011,726(2):129-135
Many classes of silver nanoparticles (Ag-NPs) have been synthesized and widely applied, but the genotoxicity of Ag-NPs and the factors leading to genotoxicity remain unknown. Therefore, the purpose of this study is to elucidate the genotoxic effects of Ag-NPs in lung and the role of oxidative stress on the genotoxic effects of Ag-NPs. For this, Ag-NPs were completely dispersed in medium by sonication and filtration. The Ag-NPs dispersed in medium were 43-260nm in size. We observed distinct uptake of Ag-NPs into BEAS-2B cells. The Ag-NPs aggregates were wrapped with an endocytic vesicle within the cytoplasm and nucleus of BEAS-2B cells. In the comet assay and micronucleus (MN) assay for BEAS-2B cells, Ag-NPs stimulated DNA breakage and MN formation in a dose-dependent manner. The genotoxic effect of Ag-NPs was partially blocked by scavengers. In particular, of the scavengers tested, superoxide dismutase most significantly blocked the genotoxic effects in both the cytokinesis-block MN assay and the comet assay. In the modified comet assay, Ag-NPs induced a significant increase in oxidative DNA damage. Furthermore, in the oxidative stress assay, Ag-NPs significantly increased the reactive oxygen radicals. These results suggest that Ag-NPs have genotoxic effects in BEAS-2B cells and that oxidative stress stimulated by Ag-NPs may be an important factor in their genotoxic effects.  相似文献   

12.
A micronucleus test in gill cells of the freshwater mussel Anodonta cygnea has been proposed for the detection of drinking water genotoxicity. Animals were exposed for 28 days to a drinking water sample and collected every week. Highly significant increases in spontaneous MN frequency were observed at each sampling, especially after 13 days of exposure. As positive control 2 doses of mytomicin C (MMC) were used (10(-8) and 10(-7) M). A second experiment was performed at a municipal waterworks in order to assess the role of water treatment processes in the production of mutagenic compounds. The most prevalent genotoxic effects were detected after chlorination (mean: 10.47% +/- 3.05, p less than 0.001).  相似文献   

13.
Many studies have revealed the presence of compounds with genotoxic activity in drinking water by means of short-term mutagenicity tests. In this study, the influence of the different steps of surface water treatment on the mutagenicity of drinking water was evaluated. Four different types of samples were collected: raw lake water, water after pre-disinfection with chlorine dioxide, water after filtration on granular activated carbon, and tap water. Water extracts underwent a bacterial toxicity test (Microtox test) and different in vitro genotoxicity tests: a test with Salmonella typhimurium strains, a Saccharomyces cerevisiae test, the SOS Chromotest with Escherichia coli and the Mutatox test with Vibrio fischeri. The Microtox test revealed high toxicity in the treated water samples. The disinfection steps increased the toxicity: the Mutatox test confirmed these results and the Salmonella/microsome test at the highest doses showed toxicity that could conceal mutagenicity. The SOS Chromotest was positive in all treated water samples without metabolic activation. In the test with S. cerevisiae both toxicity and genotoxicity generally increased during the water treatment steps, especially in cells without induction of cytochrome P450.  相似文献   

14.
Chlorination is widely used method in the disinfection of drinking and utility water worldwide. In this study, cytotoxic and genotoxic effects of sodium hypochlorite were investigated by the cytokinesis-block micronucleus assay and chromosomal aberration analysis on human peripheral lymphocytes in vitro. A significant increase in chromosomal aberration frequency was observed in all treatments of NaOCl (0.030, 0.065, 0.100, 0.25, 0.5, 1, 2, 4 μg/mL) at 24 and 48 h compared with the negative control and mitomycin C (MMC, 0.3 μg/mL), which was used as a positive control. NaOCl significantly increased the frequency of micronuclei in a dose dependent manner. The results showed that there was a significant correlation between NaOCl concentration and chromosomal aberration, micronuclei frequency, necrotic cells, apoptotic cells and binucleated cells.  相似文献   

15.
Although arsenic trioxide (ATO) has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by ATO in a human leukemia (HL-60) cell line using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. HL-60 cells were treated with different doses of ATO for 24 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that ATO significantly (P < 0.05) reduced the viability of HL-60 cells in a dose-dependent manner, showing a LD50 value of 6.4 ± 0.6 μg/mL. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HL-60 cells associated with ATO exposure. We observed a significant increase (P < 0.05) in comet tail-length, tail arm and tail moment, as well as in percentages of DNA cleavage at all doses tested, showing an evidence of ATO-induced genotoxic damage in HL-60 cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by heavy metals like arsenic. Taken together, our findings suggest that ATO exposure significantly (P < 0.05) reduces cellular viability and induces DNA damage in HL-60 cells as assessed by MTT and alkaline single cell gel electrophoresis assays, respectively.  相似文献   

16.
The measurement of cytogenetic alterations in vitro is considered an initial step in the risk assessment procedures for genotoxic agents. The concern about genotoxic pollutants in natural fish population makes the use of fish-derived cells an useful tool for these purposes. The technological improvements in well-established cytogenetic endpoints, such as micronuclei (MN) estimations by means of flow cytometry, have been proposed in the later years using mammalian cells. In this work, we test the capability of flow cytometry to evaluate MN induction and cell cycle alterations in an established fish cell line (RTG-2) using three agent-inductor models at different concentrations and exposure periods. For mitomycin C, an inverse relationship between length of exposure period and concentrations was observed. A dose-response relationship was observed after exposing RTG-2 cells to vincristine sulfate and benzo(a)pyrene. As this study shows, RTG-2 cells respond to clastogenic and aneugenic effects of the tested chemicals through the induction of MN at similar doses to mammalian cells and without the addition of exogenous metabolic activity. The possibility to check cell cycle alterations, in the same sample, gives the opportunity to evaluate early signals of cytotoxicity. The use of flow cytometry improves the assay by means of its speed and objectivity, which makes the assay very useful for genotoxicity assessment of aquatic chemicals.  相似文献   

17.
Nitrosamine water disinfection byproducts (DBPs) are an emerging class of non-halogenated, nitrogen-containing water contaminants. Five nitrosamine DBPs were analyzed for genotoxicity (N-nitrosodimethylamine (NDMA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA). Using Salmonella typhimurium strain YG7108 the descending rank order of mutagenicity was NDMA>NPIP>NMOR>NPYR; NDPhA was not mutagenic. We developed and calibrated an exogenous S9 mix that was highly effective in activating NDMA in Chinese hamster ovary (CHO) cells using the SCGE (Comet) assay. The descending rank order for genotoxicity was NDMA>NPIP>NMOR. NDPhA was genotoxic only at one concentration and NPYR was not genotoxic. The genotoxic potencies in S. typhimurium and CHO cells were highly correlated. Based on their comparative genotoxicity attention should be focused on the generation and occurrence of NDMA, NPIP and NMOR. Current drinking water disinfection processes may need to be modified such that the generation of nitrosamine DBPs is effectively limited in order to protect the environment and the public health.  相似文献   

18.
Rio Grande do Sul (RS) coal is low quality and typically obtained by strip mining. In a recent study concerning 2 years of biomonitoring in coal regions, we demonstrated the genotoxicity of coal and related products on blood cells of native rodents, from RS, Brazil. With the goal of studying the variations in the effects of RS coal on different tissues of the same rodent, we utilized, besides the single cell gel (SCG) and micronucleus (MN) assay on blood, histological analyses and SCG assay of bone marrow, spleen, kidney, liver and lung cells, and MN assay of bone marrow and spleen cells. In addition, to identify agents that can potentially influence the results, concentrations of several heavy metals were analyzed in livers and in soil, and the total concentration of hydrocarbons in the soil was determined. Rodents exposed to coal were captured at two different sites, Butiá and Candiota, in RS. Reference animals were obtained from Pelotas, where there is no coal mining. This report provides chemical and biological data from coal regions, indicating the possible association between Zn, Ni, Pb and hydrocarbons in the induction of DNA damage (e.g. single strand-breaks and alkali-labile sites) determined by the alkaline SCG assay in cells from Ctenomys torquatus. The results of the present SCG study indicate that coal and by-products not only induce DNA damage in blood cells, but also in other tissue cells, mainly liver, kidney and lung. Neither the MN assay nor histopathological observations showed significant differences; these analyses may be useful under circumstances where genotoxicity is higher. In conclusion we believe that the in vivo genotoxicity of coal can be biomonitored by the SCG assay, and our studies suggest that wild rodents, such as C. torquatus are useful for monitoring genotoxic damage by both methods, the SCG assay and the MN test.  相似文献   

19.

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.

  相似文献   

20.
Zhang L  Xu L  Zeng Q  Zhang SH  Xie H  Liu AL  Lu WQ 《Mutation research》2012,741(1-2):89-94
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号