共查询到14条相似文献,搜索用时 0 毫秒
1.
W.Jason Bunna Harry E Heatha Paul A LeBlanca Gary L Sloana 《FEMS microbiology letters》1998,165(1):123-127
Staphylococcus simulans biovar staphylolyticus produces a staphylolytic glycylglycine endopeptidase (lysostaphin) and a micrococcolytic endo-β-N-acetylglucosaminidase (hexosaminidase) as proenzymes that are proteolytically processed through multiple intermediates to their mature forms by an extracellular sulfhydryl protease. Analysis of protease production by immunoblots using antiserum prepared against purified protease and by renaturing activity gels using gelatin as the substrate has revealed that the lysostaphin-processing protease also is produced as a proenzyme, which appears to be autocatalytically processed. Very little proprotease could be detected in supernatants from cultures of S. simulans biovar staphylolyticus, which suggested that the protein was being processed before it was released to the culture medium. Analysis of wall-associated proteins revealed that processing of proprotease occurred primarily in the cell wall. Furthermore, processing of prolysostaphin and prohexosaminidase also occurred in the cell wall matrix. 相似文献
2.
Lynn M. Fondren Gary L. Sloan Paul A. LeBlanc Harry E. Heath 《FEMS microbiology letters》1994,117(2):231-235
Abstract Staphylococcus simulans biovar staphylolyticus contains five plasmids designated pACK1 through pACK5. Non-denaturing electrophoretic analysis of an extract prepared from wild-type cells revealed three bands of catalase activity, whereas an extract of cells cured of pACK1 produced only two catalase bands. Cloning and Southern hybridization analysis showed that there is a catalase structural gene on pACK1. The plasmid-specified catalase was the major activity produced under both aerobic and anaerobic conditions of growth. 相似文献
3.
James D. Nitterauer Harry E. Heath Lucie S. Heath Paul A. LeBlanc Gary L. Sloan 《FEMS microbiology letters》1991,84(1):23-26
A derivative of Staphylococcus simulans biovar staphylolyticus cured of all five plasmids present in the wild-type organism was developed, and the characteristics of extracellular protein production by this plasmidless strain were compared to those of the wild type. Although staphylolytic endopeptidase (lysostaphin) and beta-lactamase are known to be plasmid encoded, analysis of this cured strain revealed that most other extracellular proteins are chromosomally encoded. 相似文献
4.
The effects of tazobactam, a relatively new beta-lactamase inhibitor, were investigated on growth and penicillin-binding proteins (PBPs) of Borrellia burgdorferi. A previous communication from our group demonstrated several proteins capable of binding labelled penicillin in this organism. Of these proteins, 94-kDa and 57-kDa PBPs possessed the highest affinity for penicillin and were assumed to be essential proteins involved in cell-wall synthesis. In these experiments, tazobactam was used in competition binding experiments as well as on whole spirochetes. Only the 94-kDa and 57-kDa PBPs were affected by increasing amounts of tazobactam during competition-binding experiments and growth of B. burgdorferi was also inhibited. These results may explain the in vitro activity of beta-lactamase inhibitors in general and suggest a utility for these compounds when examining PBPs with hydrolysing activity and/or organisms with beta-lactamases. 相似文献
5.
溶葡球菌酶是Staphylococcus simulans分泌的能分解葡萄球菌的酶,它的基因位于一个约40kb的质粒DNA上。为了探索用高拷贝质粒取代原有的质粒的可能性,本文首先进行了从该菌株中消除含有溶葡球菌酶基因质粒的实验研究,获得了相应的“消除”菌株。根据对目的菌株和原始菌株的比较分析,包括细胞蛋白质的SDS-聚丙烯酰胺凝胶电泳,Western blot分析,质粒DNA的琼脂糖胶电泳、Southern Blot分析,质粒DNA的限制性内切核酸酶酶切分析以及对溶葡球菌酶作用敏感性的分析,都表明该目的菌株确系Staphylococcus simulans的衍生菌株,只是清除了其中含有溶葡球菌酶基因的质粒。在此基础上,本文也进行了转化实验。 相似文献
6.
Junji Sakurada Miyo Murai Li Zhijun Akemi Usui Keiko Seki Kiyoshi Kobayashi Yoshiko Sumi Hiroko Jitsukawa Shogo Masuda 《Microbiology and immunology》1993,37(1):29-34
A simple and efficient method for the purification of staphylolytic endopeptidase (lysostaphin) contained in culture supernatant of Staphylococcus simulans biovar staphylolyticus strain by adsorption of the enzyme on bacterial cells of lysostaphin-resistant S. aureus mutant was successfully devised. Lysostaphin was sufficiently adsorbed on the heat-killed mutant cells derived from S. aureus Cowan I and efficiently eluted by 3 M KSCN. Enzyme preparation obtained by a single procedure of the affinity purification was pure enough for practical use. The yield of the enzyme was 25 mg from 1 liter culture and recovery rate was 64%. 相似文献
7.
Fedorov TV Surovtsev VI Pletnev VZ Borozdina MA Gusev VV 《Biochemistry. Biokhimii?a》2003,68(1):50-53
This work presents a method for purification of lysostaphin, a glycylglycine endopeptidase, from the culture liquid of S. simulans biovar staphylolyticus to homogeneity in a few steps. The method includes ultrafiltration and ion-exchange and hydrophobic chromatographies. The enzyme was isolated in preparative amounts with the yield of 51%. Some physical and chemical properties of the enzyme are described. 相似文献
8.
A 12.2-kilobase (kb) BclI fragment containing the lysostaphin endopeptidase gene was cloned from Staphylococcus simulans biovar staphylolyticus into Escherichia coli. The gene was expressed in E. coli and the gene product apparently was secreted into the periplasmic space. The gene was localized to a 3.3-kb region of the cloned fragment and this region was shown to contain a staphylococcal promoter for the endopeptidase gene. By hybridization analysis, the endopeptidase gene was shown to reside on the largest of five plasmids in S. simulans biovar staphylolyticus. No additional copies of this gene were detected in the genome. 相似文献
9.
Characterization of pACK4, a mobilizable plasmid from Staphylococcus simulans biovar staphylolyticus
Amy S. Gargis Lucie S. Heath Harry E. Heath Paul A. LeBlanc Gary L. Sloan 《Plasmid》2009,62(3):201-205
Staphylococcus simulans biovar staphylolyticus, the lysostaphin-producing organism, contains five plasmids designated pACK1–pACK5. pACK4 was found to be relaxable and to share sequence similarity with a number of well-characterized mobilizable plasmids from other staphylococci. All mobilizable staphylococcal plasmids characterized to date mediate resistance to various antibiotics, but pACK4 is unique because it contains no recognizable antibiotic resistance genes. pACK4 was found to contain an origin of transfer (oriT) region that shares inverted repeat regions and the same nic site as several other mobilizable staphylococcal plasmids. The presence of this conserved oriT region suggested that pACK4 might be mobilized in the presence of a conjugative plasmid. Filter mating studies revealed that pACK4 was mobilized by the conjugative plasmid pGO1. In addition, pACK4 was found to be virtually identical to the recently described plasmid pVGA from Staphylococcus aureus, except that pVGA contains an additional region (vgaA) that confers resistance to pleuromutilin, streptogramin A, and lincosamide. The high sequence similarity among pACK4, pVGA, and several previously described mobilizable staphylococcal plasmids suggests a common origin for these plasmids. 相似文献
10.
We have modelled, using the CHARMM27 energy force field, the structures of closed and open forms of Staphylococcus simulans lipase (SSL) on the basis of the crystal structures of Bacillus stearothermophilus and Staphylococcus hyicus lipases, respectively. The models suggested the presence of a main lid and a second lid that may act with the former as a double door to control the access to the active site. Superimposition of both closed and open forms of SSL allowed us to determine the hinge regions allowing the movements of the main and the second lid upon lipase activation. The flexibility of these hinge regions was checked by molecular dynamics simulations. The SSL models also allowed us to identify key residues involved in binding substrates, calcium or zinc ions. 相似文献
11.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells. 相似文献
12.
Soong G Martin FJ Chun J Cohen TS Ahn DS Prince A 《The Journal of biological chemistry》2011,286(41):35891-35898
Staphyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe necrotizing pneumonia. The mechanisms whereby these organisms invade across the mucosal epithelial barrier to initiate invasive infection are not well understood. Protein A (SpA), a highly conserved and abundant surface protein of S. aureus, activates TNF receptor 1 and EGF receptor (EGFR) signaling cascades that can perturb the cytoskeleton. We demonstrate that wild-type S. aureus, but not spa mutants, invade across polarized airway epithelial cell monolayers via the paracellular junctions. SpA stimulated a RhoA/ROCK/MLC cascade, resulting in the contraction of the cytoskeleton. SpA(+) but not SpA(-) mutants stimulated activation of EGFR and along with subsequent calpain activity cleaved the membrane-spanning junctional proteins occludin and E-cadherin, facilitating staphylococcal transmigration through the cell-cell junctions. Treatment of polarized human airway epithelial monolayers with inhibitors of ROCK, EGFR, MAPKs, or calpain prevented staphylococcal penetration through the monolayers. In vivo, blocking calpain activity impeded bacterial invasion into the lung parenchyma. Thus, S. aureus exploits multiple receptors available on the airway mucosal surface to facilitate invasion across epithelial barriers. 相似文献
13.
Felix Michael Büttner Sebastian Zoll Mulugeta Nega Friedrich G?tz Thilo Stehle 《The Journal of biological chemistry》2014,289(16):11083-11094
The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium''s peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen. 相似文献