首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

2.
We studied the vertical distribution of Lepidoptera from a canopy walkway within a dipterocarp rain forest at Kinabalu Park (Borneo) using three different methods: (1) Bait traps to survey fruit-feeding nymphalid butterflies, (2) standardized counts for predominantly flower-visiting butterflies and their potential predators, aerial-hawking birds, and (3) attraction by blacklight for hawk- and tiger moths. There was a distinct decrease in the abundance of fruit-feeding nymphalids towards the canopy, probably due to a reduced and less predictable availability of rotting fruits in higher strata. These constraints might also be responsible for a higher abundance variation in the canopy, and a significant shift in size from larger species in the understorey to smaller ones in the canopy. Changes of microclimate and the conspicuous increase of insectivorous aerial-hawking birds from ground to canopy layer may be responsible for the prominent change in species composition of fruit-feeding nymphalids between 20 and 30 m. Nectar-feeding Lepidoptera showed a reversed abundance pattern. One main factor contributing to the much higher abundance of flower-visiting butterflies and moth taxa in the canopy, such as Sphingidae and some Arctiinae, might be the increase of nectar resources available in upper vegetation layers. A distinctly higher diversity in hawkmoths was also found in the canopy. A higher abundance of insectivorous aerial-hawking birds in the canopy might contribute to the shift in body design of fruit-feeding nymphalids from more slender bodies at lower vegetation layers to stouter ones (i.e. species which are stronger on the wing) in the canopy. Larval resources could play an additional role in specialisation on but a small part of the vertical gradient. This may explain stratification pattern of the nymphalid subfamilies Morphinae and Satyrinae. Monocotyledoneous larval food plants of both taxa, whose flight activity is largely restricted to the understorey, occur mostly in lower vegetation layers. Our observations on a wide taxonomic and ecological range of butterflies and moths indicate that tropical forest canopies hold a distinct and unique Lepidoptera fauna, whose species richness and abundance patterns differ from lower strata. However, the notion of tropical forest canopies as peaks of terrestrial diversity does not hold uniformly for all taxa or guilds.  相似文献   

3.
Concomitant with the rapid loss of tropical mature forests, the relative abundance of secondary forests is increasing steadily and the latter are therefore of growing interest for conservation. We analysed species richness of fruit-feeding nymphalid butterflies in secondary forest fragments of different age and isolation and in mature forest at the eastern margin of the Lore Lindu National Park in Central Sulawesi, Indonesia. From April to August 2001 we collected 2322 individuals of fruit-feeding butterflies, belonging to 33 species. Butterfly species richness increased with succession, but was significantly higher in mature forests than in all types of secondary forest. Isolation of the forest fragments did not have a significant effect on butterfly species richness in the range of distances (up to 1700 m) studied. Rather it appeared to affect only a few species. Species richness of endemic species was higher than of non-endemic species. Although endemic species were most diverse in mature forests, many species captured were restricted to secondary forests. Our results show that mature forest is essential for the conservation of nymphalid butterflies and for the endemic species in this area. However, considering the relatively large number of species found in these rather small habitat islands, secondary forest fragments, especially older successional stages, can be taken into account in conservation efforts and thus contribute to the preservation of tropical biodiversity on a landscape scale.  相似文献   

4.
This study evaluated how the edge effect influences the structuration of fruit-feeding butterfly assemblages in swamp forest fragments of the subtropical Atlantic Forest, Southern Brazil. Sampling was carried out twice in 10 fragments using baited traps placed in sampling units both at the forest edge and 50 m within the forest interior, with the habitats being defined by a set of environmental variables. Richness and abundance were higher for edge habitats with an effect of temperature depending on humidity and luminosity. The subfamily/tribe composition of fruit-feeding butterflies was segregated between edge and interior and was predicted by wind speed and the interaction between humidity and luminosity. Fifty meters within the forest interior is not sufficient to cause homogenization of butterfly composition between the edge and interior of swamp forest fragments, indicating distinct assemblages in each habitat. The interior harboured forest-loving butterfly groups while the edge harboured generalist sun-loving and common butterflies associated with disturbed areas, suggesting resistance to the effects of habitat fragmentation. We highlight the importance of using fruit-feeding butterfly groups, instead of species, to evaluate edge effects. We also suggest that a heterogeneous matrix with native habitats and distinct semi-natural land-use systems be maintained to manage subtropical areas by increasing connectivity within the landscape. Considering the impacts that the Atlantic Forest suffers, increased knowledge of modifications caused at small and regional scales is crucial for the maintenance of ecological processes and represents a tool for conservation planning and environmental agendas.  相似文献   

5.
The Atlantic Forest deserves special attention due to its high level of species endemism and degree of threat. As in other tropical biomes, there is little information about the ecology of the organisms that occur there. The objectives of this study were to verify how fruit-feeding butterflies are distributed through time, and the relation with meteorological conditions. Species richness and Shannon index were partitioned additively at the monthly level, and β diversity, used as a hierarchical measure of temporal species turnover, was calculated among months, trimesters, and semesters. Circular analysis was used to verify how butterflies are distributed along seasons and its relation with meteorological conditions. We sampled 6488 individuals of 73 species. Temporal diversity of butterflies was more grouped than expected by chance among the months of each trimester. Circular analyses revealed that diversity is concentrated in hot months (September–March), with the subfamily Brassolinae strongly concentrated in February–March. Average temperature was correlated with total abundance of butterflies, abundance of Biblidinae, Brassolinae and Morphinae, and richness of Satyrinae. The present results show that 3 mo of sampling between September and March is enough to produce a nonbiased sample of the local assemblage of butterflies, containing at least 70 percent of the richness and 25 percent of abundance. The influence of temperature on sampling is probably related to butterfly physiology. Moreover, temperature affects resource availability for larvae and adults, which is higher in hot months. The difference in seasonality patterns among subfamilies is probably a consequence of different evolutionary pressures through time.  相似文献   

6.
In the tropics vast areas of natural forests are being converted into plantations. The magnitude of the resulting loss in arthropod biodiversity and associated ecosystem services represents a significant topic of research. In this study we contrasted the abundance, species richness and faunal turnover of butterflies, resident butterflies (i.e., whose host plants were ascertained to occur in the habitats studied) and termites between small (average 4.3 ha) 20+ year old exotic plantations (teak and Terminalia), native plantations (Cedro espino), and an old growth forest in Panama. We used Pollard walks and manual search to quantify the abundance or occurrence of butterflies and termites, respectively. In 2014 we observed 4610 butterflies representing 266 species and 108 termite encounters (out of 160 quadrats) representing 15 species. Butterflies were more abundant and diverse in plantations than in the forest, whereas this pattern was opposite for resident butterflies and termites. There was marked faunal turnover between plantations and forest. We conclude that (a) the magnitude of faunal changes between forest and plantations is less drastic for termites than for butterflies; (b) resident butterfly species are more impacted by the conversion of forest to plantations than all butterflies, including transient species; and (c) species richness does not necessarily decrease in the series forest > native > exotic plantations. Whereas there are advantages of studying more tractable taxa such as butterflies, the responses of such taxa can be highly unrepresentative of other invertebrate groups responsible for different ecological services.  相似文献   

7.
We analysed the influence of contemporary geography on butterfly diversity for islands in the Mediterranean Basin. We found that island size and distance from the mainland has a significant effect on the number of species. We also used butterflies as an indicator group to identify the importance of forest habitats for biodiversity conservation in the island of Cyprus. To understand the relative importance of local vegetation characteristics of butterflies in the Pentadaktylos mountains transect counts were used to assess the abundance and butterfly diversity in two different forest types. A total of 1,602 butterflies and 23 species were recorded during this research. We observed highly significant effects of forest type on abundance and species richness of butterflies. For example, number of butterflies was significantly higher in old forest than young pine forest. Also, the abundance of endemic butterflies was highest in old forest habitats. Therefore, the survival of the majority of endemic butterflies in Cyprus may depend on conservation of old forests and their understorey plants.  相似文献   

8.
Agricultural landscapes provide financial livelihoods for farming communities in rural areas. However, such agroenvironments can significantly impact the local floral biodiversity and introduce harmful invasive species to the ecosystem. Despite the prominence of plantations throughout the tropics, their effects on local flora are limited to only a few specific cash crops and geographical regions. Here, we compared the species richness and structural diversity of vegetation in natural forest fragments and three types of vanilla plantation within the Sava region of north-east Madagascar ranging from those within or adjacent to existing forests, to intensively cultivated plantations. We recorded data on plant species abundance, diameter at breast height and canopy cover within multiple sites of each habitat. We used abundance data to calculate species richness indices, and we compared these metrics between habitats. Forested habitats contained a significantly higher floral species richness, structural diversity and more endemic and regionally native species than nonforested, anthropogenic vanilla plantations. However, our results suggest that the high floral species richness and structural diversity of natural forests can be partially achieved in vanilla plantations, depending on the site's management regime; traditionally managed vanilla plantations located close to natural forests can support diverse floral communities. These encouraging findings for plant conservation and sustainable agroforestry in Madagascar suggest that that newly created vanilla plantations and already existing nonforested plantations should endeavour to follow the more traditional forested approach to enhance the future sustainability and promote floristic diversity.  相似文献   

9.
We compare species richness of birds, fruit-feeding butterflies and ground-foraging ants along a coffee intensification gradient represented by a reduction in the number of species of shade trees and percentage of shade cover in coffee plantations. We sampled the three taxa in the same plots within the same period of time. Two sites were selected in the Soconusco region of the state of Chiapas, Mexico. Within each site four habitat types were selected and within each habitat type four points were randomly selected. The habitat types were forest, rustic coffee, diverse shade coffee, and intensive coffee (low density of shade). We found different responses of the three taxa along the intensification gradient. While ants and butterflies generally decrease in species richness with the decrease of shade cover, birds declined in one site but increased in the other. Ant species richness appears to be more resistant to habitat modification, while butterfly species richness appears to be more sensitive. Bird species richness was correlated with distance from forest fragments but not with habitat type, suggesting that scale and landscape structure may be important for more mobile taxa. For each of these taxa, the rustic plantation was the one that maintained species richness most similar to the forest. We found no correlation between the three taxa, suggesting that none of these taxa are good candidates as surrogates for each other. We discuss the implications of these results for the conservation of biodiversity in coffee plantations, in particular, the importance of distinguishing between different levels of shade, and the possibility that different taxa might be responding to habitat changes at different spatial scales.  相似文献   

10.
Eucalyptus spp. are commonly planted, forming non-native plantations, including the tropics and their wildlife conservation value is relatively unknown. Recent studies have concluded that secondary forests and tree plantations are less diverse than well-developed tropical rain forests. However, introduced Eucalyptus stands harbored similar species richness to surrounding native woodland in temperate woodlands in North America though the identity of the species present may differ. Species composition, as well as dominance curves and differences in community structure add additional insight to understanding faunistic responses to replacement of native woodland by Eucalyptus plantations. Here, we compared species richness, diversity patterns, and the distribution of non-weaving spiders between native woodlands and Eucalyptus plantations in a temperate region of Mexico. We found more Lycosidae species in all plantation stands. Other community attributes were not consistently different between plantations and native woodlands. This is explained by similarities between, and differences within, the understory of the two main vegetation types. Multivariate analyses identified three spider groups and five spider species could be identified as indicators of these groups. A comparison of the number of species of the wandering spiders between the two vegetation types suggests a compensation pattern that is reported here for the first time.  相似文献   

11.
Nowadays 37% of Earth’s ice-free land is composed by fragments of natural habitats settled in anthropogenic biomes. Therefore, we have to improve our knowledge about distribution of organisms in remnants and to understand how the matrix affects these distributions. In this way, the present study aims to describe the structure of the butterfly assemblages and determined how richness and abundance are influenced by the scale of the surrounding vegetation. General linear models were used to investigate how the type and scale of vegetation cover within a radius of 100–2,000 m around the sampling point explained butterfly diversity. After sampling ten forest fragments we found 6,488 individuals of 73 species. For all clades tested null models explain the species richness at the fragments better than other models when we include the effect of butterfly abundance as a covariate. Abundance of Satyrini, Brassolini, and Biblidinae were best predicted by small scales (100–200 m), and large scales were more suited for Charaxinae. The presence of pasture best explains the abundance of all groups except Charaxinae, which was best explained by early-regrowth forest. The abundance of different species and groups are correlated with different kinds of vegetation cover. However, we demonstrate that small scales (100–200 m) are more effective at explaining the abundance of most butterflies. These results strongly suggest that efforts to preserve insect diversity in forest fragments should take in account the immediate surroundings of the fragment, and not only the regional landscape as a whole. In general, actions of people living near forest fragments are as important to fruit-feeding butterflies as large scale actions are, with the former being seldom specified in management plans or conservation policies.  相似文献   

12.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

13.
This study compared the bird assemblages of native semi-natural woodlands and non-native Sitka spruce (Picea sitchensis) plantations in Ireland to identify what vegetation variables most influenced birds and to identify management targets in plantations to maximise future bird conservation. Point counts were conducted in 10 Oak (Quercus spp.) and 10 Ash (Fraxinus excelsior) native woodlands and in five Mid-rotation (20–30 years old) and five Mature (30–50 years old) Sitka spruce plantations. Ordination was used to characterise woodland types according to their constituent bird species. Total bird density (calculated using Distance software) and species richness were assessed for the different woodland types. Oak and Ash woodland bird assemblages were separated from Mid-rotation and Mature plantations by the ordination. There was no difference in total bird density between any of the woodland types. Oak woodlands had significantly higher species richness than either Mid-rotation or Mature Sitka spruce plantations. Ash had higher species richness than Mature Sitka spruce plantations. Understorey vegetation was negatively associated with total bird density, which also varied with survey year. Understorey vegetation was positively associated with species richness. Reasons for the relationships between vegetation and bird assemblages are discussed. Management should seek to increase shrub and understorey vegetation in the Mid-rotation phase to improve the contribution of plantations to bird conservation.  相似文献   

14.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

15.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

16.
Quick surveys are often used by conservation biologists to assess biodiversity. In tropical forests, fruit-feeding butterflies are a convenient indicator group because they can be readily trapped and are comparatively easy to identify. However, studies carried out in Costa Rica and Ecuador have revealed that long-term sampling is needed to estimate biodiversity accurately. Furthermore, almost half of the biodiversity of fruit-feeding butterflies in the neotropics was found to be in the canopy. Short term sampling in the understory can, therefore, lead to inaccurate estimates of species richness and worse, to poorly informed conservation decisions. Comparable to the studies in South America, we performed a long-term trapping study of the same guild of butterflies in the understory and canopy of Kibale Forest in Uganda, to describe temporal and vertical patterns of biodiversity. We caught 32,308 individuals of 94 species over three years. About 14% of these species could be categorized as canopy specialists and 68% as understory specialists. Temporal variation was extensive and did not follow a clear seasonal pattern. This is the first study in an African forest with continuous sampling of fruit-feeding butterflies over multiple years and in both canopy and understory.  相似文献   

17.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

18.
Worldwide, tropical landscapes are increasingly dominated by human land use systems and natural forest cover is decreasing rapidly. We studied frugivorous butterflies and several vegetation parameters in 24 sampling stations distributed over near-primary forest (NF), secondary forest (SF), agroforestry and annual culture sites in the Northeastern part of the Korup region, SW Cameroon. As in other studies, both butterfly species richness and abundance were significantly affected by habitat modification. Butterfly richness and abundance were highest in SF and agroforestry sites and significantly lower in NF and annual crop sites. Butterfly species richness increased significantly with increasing tree density, but seemed to decrease with increasing herb diversity and density in annual crop farms. A significant negative correlation was found between butterfly geographic range and their preference for NF sites. Our results also showed that agroforestry systems, containing remnants of natural forest, can help to sustain high site richness, but appear to have low complementarity through loss of endemic species confined to more undisturbed habitats. Our study also indicated that the abundance of selected restricted-range butterflies, particularly in the family Nymphalidae, appears to be a good indicator to assess and monitor forest disturbance.  相似文献   

19.
Edge effects are increasing in forest-dominated landscapes worldwide, due to increased fragmentation by other land uses. Understanding how species respond to edges is therefore critical to define adequate conservation measures. We compared the relative importance of interior and edge habitats for butterflies in a landscape composed of even-aged pine plantations interspersed with semi-natural habitats. Butterfly assemblages were surveyed simultaneously at the edge and the interior of 68 patches belonging to four main habitat types: herbaceous firebreaks, clearcuts and young pine stands, older pine stands, and deciduous woodlands. Butterfly species richness was higher at edges than in interior habitats, especially for pine stands. Assemblage composition differed significantly between edge and interior habitats, except for firebreaks. Of the 23 most abundant butterfly species, seven were significantly more abundant in one or all edge habitat types, five in interior habitats, and 11 species showed no edge-interior preference. Modelling the presence of individual species in edge habitats revealed the importance of habitat variables such as the abundance of nectar and host-plants, but also of the abundance of the same species in the adjacent interior habitat. Moreover, our results suggest that most species use several, different habitat types to find supplementary or complementary resources, including micro-climatic refuges to escape hot temperatures during summer. The use of adjacent edge and interior habitats by butterflies is probably a key process in such mosaic landscapes and underlines the importance of landscape heterogeneity for butterfly conservation.  相似文献   

20.
为了查明秦岭国家植物园蝴蝶资源和多样性状况, 本研究选取了5种生境, 利用样线法进行了3年的蝴蝶多样性观测。结果表明: 秦岭国家植物园蝴蝶共有5科76属134种; 物种丰富度指数、物种多样性指数、均匀度指数和优势度指数分别为1.3295、3.4616、0.7068和0.7656; 其中蛱蝶科属数及物种数最多(33属65种), 凤蝶科最低(5属10种); 蛱蝶科物种多样性指数及物种丰富度指数最高, 分别为2.8525及1.3622; 凤蝶科多样性指数最低(1.4936); 粉蝶科物种丰富度指数最低(0.2790)。5种生境中, 随着植被丰富度的增加, 蝴蝶多样性指数上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号