首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the gene encoding topoisomerase I of Escherichia coli were tested for their effect on plasmid recombination. Recombination was decreased 1,000-fold at 30 and 37 degrees C and occurred at approximately wild-type frequencies at 42 degrees C. The suppression of topA mutations at 42 degrees C did not appear to be a result of increased topoisomerase I activity at 42 degrees C.  相似文献   

2.
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.  相似文献   

3.
4.
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.  相似文献   

5.
Although highly homologous to the other eukaryotic type I DNA topoisomerases, vaccinia virus DNA topoisomerase I is distinct in its resistance to the anti-cancer drug camptothecin. After comparison of available sequences of sensitive and resistant type I topoisomerases, the aspartic acid at position 221 of vaccinia virus topoisomerase I is mutated to a valine. The resulting mutant protein is partially active. In contrast to the wild type enzyme, the relaxation of supercoiled DNA is inhibited by camptothecin. Its cleavage reaction with DNA is enhanced by camptothecin due to inhibition of religation of DNA. This demonstrates that even though the size of vaccinia virus is only about one-third that of the other camptothecin-sensitive topoisomerases, it has a potential interaction site for camptothecin.  相似文献   

6.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

7.
The putative structural gene encoding the vaccinia virus type I DNA topoisomerase (EC 5.99.1.2) was expressed in Escherichia coli under the control of a bacteriophage T7 promoter. Provision of T7 RNA polymerase resulted in the accumulation to high level of a Mr = 33,000 type I topoisomerase with the properties of the vaccinia enzyme. A simple purification scheme yielded approximately 8 mg of recombinant vaccinia topoisomerase from 400 ml of bacteria. DNA unwinding by the enzyme was stimulated by magnesium, manganese, calcium, cobalt, and spermidine, but inhibited by copper and zinc. Like eukaryotic cellular type I topoisomerases, but unlike the prokaryotic counterpart, the recombinant topoisomerase relaxed positively and negatively supercoiled DNA. The viral topoisomerase I was, however, resistant to the effects of camptothecin, a drug that specifically inhibits cellular type I topoisomerases.  相似文献   

8.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

9.
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration.  相似文献   

10.
Vaccinia virus replication is inhibited by etoposide and mitoxantrone even though poxviruses do not encode the type II topoisomerases that are the specific targets of these drugs. Furthermore, one can isolate drug-resistant virus carrying mutations in the viral DNA ligase and yet the ligase is not known to exhibit sensitivity to these drugs. A yeast two-hybrid screen was used to search for proteins binding to vaccinia ligase, and one of the nine proteins identified comprised a portion (residue 901 to end) of human topoisomerase IIbeta. One can prevent the interaction by introducing a C(11)-to-Y substitution mutation into the N terminus of the ligase bait protein, which is one of the mutations conferring etoposide and mitoxantrone resistance. Coimmunoprecipitation methods showed that the native ligase and a Flag-tagged recombinant protein form complexes with human topoisomerase IIalpha/beta in infected cells and that this interaction can also be disrupted by mutations in the A50R (ligase) gene. Immunofluorescence microscopy showed that both topoisomerase IIalpha and IIbeta antigens are recruited to cytoplasmic sites of virus replication and that less topoisomerase was recruited to these sites in cells infected with mutant virus than in cells infected with wild-type virus. Immunoelectron microscopy confirmed the presence of topoisomerases IIalpha/beta in virosomes, but the enzyme could not be detected in mature virus particles. We propose that the genetics of etoposide and mitoxantrone resistance can be explained by vaccinia ligase binding to cellular topoisomerase II and recruiting this nuclear enzyme to sites of virus biogenesis. Although other nuclear DNA binding proteins have been detected in virosomes, this appears to be the first demonstration of an enzyme being selectively recruited to sites of poxvirus DNA synthesis and assembly.  相似文献   

11.
Interferon regulatory factor 3 (IRF-3) undergoes phosphorylation-induced activation in virus-infected cells and plays an important role in the antiviral innate immune response. The E3L protein encoded by vaccinia virus is known to impair phosphorylation and activation of IRF-3. Kinases in addition to I kappaB kinase-related kinases are implicated in the IRF-3-dependent antiviral response. To test in human cells the role of the protein kinase regulated by RNA (PKR) in IRF-3 activation, HeLa cells made stably deficient in PKR using an RNA interference strategy were compared with PKR-sufficient cells. Rapid phosphorylation and nuclear accumulation of IRF-3 were detected in PKR-sufficient cells following infection with E3L deletion mutant (DeltaE3L) virus. By contrast, the full IRF-3 activation response was largely abolished in PKR-deficient cells. The DeltaE3L virus-induced IRF-3 activation seen in PKR-sufficient cells was diminished by treatment with cytosine beta-D-arabinofuranoside. Furthermore, the vaccinia mutant ts23, which displays increased viral double-stranded RNA production at 39 degrees C, induced PKR-dependent IRF-3 phosphorylation at 39 degrees C but not at 31 degrees C. Both IRF-3 phosphorylation and cell apoptosis induced by infection with DeltaE3L virus were dependent upon RIG-I-like receptor signal transduction components, including the adapter IPS-1. These data suggest that PKR facilitates the host innate immune response and apoptosis in virus-infected cells by mediating IRF-3 activation through the mitochondrial IPS-1 signal transduction pathway.  相似文献   

12.
13.
The interaction of chicken lymphocytes with vaccinia-infected cells was examined HEp-2 cells infected with the virus adsorbed chicken lymphocytes. The phenomenon was inhibited by anti-vaccinia serum. Lymphocytes prepared from a chicken possessing red blood cells insensible to the hemagglutinin of vaccinia virus were also adsorbed. Lymphocytes were adsorbed in similar degree at 37 degrees C and at room temperature.  相似文献   

14.
Mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide (LPS) molecule (heptose-deficient, chemotype Re) leak periplasmic enzymes (acid phosphatase (EC 3.1.3.2), cyclic phosphodiesterase, ribonuclease I (EC 3.1.4.22), and phosphoglucose isomerase (EC 5.3.1.9) (PGI is at least partially periplasmic in E. coli and S. typhimurium; see below)) and do not leak an internal enzyme (glucose-6-phosphate dehydrogenase) into the growth medium. The extent of this leakage is markedly increased at higher temperature (42 degrees C). Leakage of periplasmic enzymes from the strains lacking units distal to heptose I in the LPS molecule (chemotype Rd2) occurs only at 42 degrees C, and not at 30 or 37 degrees C. The extent of leakage of these enzymes from smooth strain and mutants of other LPS chemotypes (Rc, Rd1) is not significant, and is not influenced by growth temperatures. The kinetics of leakage of periplasmic enzymes after shift to 42 degrees C in nutrient broth reveal an accelerated release into the medium from heptose-deficient strains of cyclic phosphodiesterase and ribonuclease I after 30 min at 42 degrees C, and phosphoglucose isomerase after 60 min at 42 degrees C; at 30 degrees C the rate of release of cyclic phosphodiesterase and ribonuclease I is relatively slower. After 60 min at 42 degrees C in nutrient broth, growth of these strains has either slowed down or stopped. In L-broth, which permits the growth of the heptose-deficient strain (SA1377) at 42 degrees C, leakage of cyclic phosphodiesterase and phosphoglucose isomerase occurs, whereas there is no detectable leakage of these enzymes from the isogenic smooth strain (SA1355). Thus, leakage of the periplasmic enzymes from the heptose-deficient strain occurs with or without growth. Mg2+ (0.75 mM), sodium chloride (50 mM), and sucrose (100 mM) in nutrient broth at 42 degrees C prevent the leakage of these enzymes. The shedding of LPS from the heptose-deficient as well as the smooth strains is enhanced by high temperature (42 degrees C), whereas considerable leakage of protein occurs only in the heptose-deficient strain at 42 degrees C and not in the smooth strain. The smooth and heptose-deficient strains are equally sensitive to osmotic shock although a significant proportion of acid phosphatase and cyclic phosphodiesterase activities from the heptose-deficient cells grown at 42 degrees C comes off in the Tris-NaCl wash step suggesting a rather loose attachment of these enzymes onto the cell surface.  相似文献   

15.
Identification of a potent decatenating enzyme from Escherichia coli   总被引:20,自引:0,他引:20  
A topoisomerase has been purified from extracts of a topoisomerase I-deficient strain of Escherichia coli based solely on its ability to segregate pBR322 DNA replication intermediates in vitro. This enzyme rapidly decatenated multiply linked form II:form II DNA dimers to form II DNA, provided that the DNA substrate contained single-stranded regions. Efficient relaxation of negatively supercoiled DNA was observed when reaction mixtures were incubated at 52 degrees C, but not at 30 degrees C (the temperature at which decatenation was readily observed). This topoisomerase was insensitive to the DNA gyrase inhibitor norfloxacin and unaffected by antibody directed against topoisomerase I. Relaxation of a unique plasmid topoisomer revealed that this decatenase changed the linking number of the DNA in steps of one and was therefore a type 1 topoisomerase. The cleavage pattern of a fragment of single-stranded phi X174 DNA generated by this decatenase was virtually identical to that reported for topoisomerase III, the least characterized topoisomerase present in E. coli.  相似文献   

16.
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.  相似文献   

17.
T M Chambers  K Essani  R G Webster 《Gene》1990,95(2):275-278
To assess the utility of two temperature-sensitive (ts) mutant vaccinia viruses as vectors for the conditional in vitro expression of recombinant foreign genes, we have studied the kinetics of expression of foreign genes incorporated into these viruses. At nonpermissive temperature, 40 degrees C, these viruses were defective either in DNA synthesis or in virus assembly. Foreign gene expression was affected by the nature of the ts lesion and by the nature of the vaccinia promoter positioned upstream from the foreign gene. With both vector viruses, a foreign gene controlled by the p7.5 early-late promoter was expressed at both 33 degrees and 40 degrees C. With the DNA synthesis-defective vector virus, foreign gene expression controlled by the p11 DNA synthesis-dependent late promoter was inhibited at 40 degrees C, but could be turned on by shift to 33 degrees C. This ts expression system provides an alternative to use of drugs that inhibit DNA synthesis as a means for experimental manipulation of gene expression. Both vector viruses can be used with existing vaccinia virus expression technology.  相似文献   

18.
A mutant sensitive to colicin M at 30 degrees C and tolerant at 42 degrees C to high concentrations of colicin M was isolated from Escherichia coli K-12. A temperature shift from 30 to 42 degrees C rescued all cells up to the time they started to lyse at 30 degrees C (25 min after addition of colicin M). The growth rate at 42 degrees C remained unaffected by colicin M. AT 42 degrees C the cell-bound colicin M was inactivated by trypsin, sodium dodecyl sulfate, and antiserum against colicin M. Ferrichrome competed with colicin M at 42 degrees C only during the initial adsorption to the common receptor protein in the outer membrane. Since cells lysed earlier at 30 degrees C when they had been preincubated with colicin M at 42 degrees C, we conclude that the process leading finally to cell lysis is initiated at 42 degrees C and stops at a later stage of colicin M trypsin, dodecyl sulfate, and antiserum when cells were transferred from 30 to 42 degrees C, we assume that colicin M is translocated from its target site towards the cell surface. The mutation conferring tolerance was mapped close to the rpsL gene.  相似文献   

19.
Molluscum contagiosum virus (MCV), the only member of the Molluscipoxvirus genus, causes benign papules in healthy people but disfiguring lesions in immunocompromised patients. The sequence of MCV has been completed, revealing that MCV encodes a probable type I topoisomerase enzyme. All poxviruses sequenced to date also encode type I topoisomerases, and in the case of vaccinia virus the topoisomerase has been shown to be essential for replication. Thus, inhibitors of the MCV topoisomerase might be useful as antiviral agents. We have cloned the gene for MCV topoisomerase, overexpressed and purified the protein, and begun to characterize its activities in vitro. Like other eukaryotic type I topoisomerases, MCV topoisomerase can relax both positive and negative supercoils. An analysis of the cleavage of plasmid and oligonucleotide substrates indicates that cleavage by MCV topoisomerase is favored just 3′ of the sequence 5′ (T/C)CCTT 3′, resulting in formation of a covalent bond to the 3′ T residue, as with other poxvirus topoisomerases. We identified solution conditions favorable for activity and measured the rate of formation and decay of the covalent intermediate. MCV topoisomerase is sensitive to inhibition by coumermycin A1 (50% inhibitory concentration, 32 μM) but insensitive to five other previously reported topoisomerase inhibitors. This work provides the point of departure for studies of the mechanism of function of MCV topoisomerase and the development of medically useful inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号