首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.  相似文献   

4.
Significant advances in our knowledge of fatty acid breakdown in plants have been made since the subject was last comprehensively reviewed in the early 1990s. Many of the genes encoding the enzymes of peroxisomal beta-oxidation of straight chain fatty acids have now been identified. Biochemical genetic approaches in the model plant, Arabidopsis thaliana, have been particularly useful not only in the identification and functional characterisation of genes involved in fatty acid beta-oxidation but also in establishing the role of beta-oxidation at different stages in plant development. Advances in our understanding of branched chain amino acid catabolism have provided convincing evidence that mitochondria play an important role in this process. This work is discussed in the context of the long running debate on the sub-cellular localisation of fatty acid beta-oxidation in plants. A significant aspect of this review is that it provides the opportunity to present a comprehensive analysis of the complete Arabidopsis genome sequence for each of the different gene families that are known to be involved in beta-, alpha-, and omega-oxidation of fatty acids in plants. Inevitably, this increase in information, as well as providing many answers also raises many new intriguing questions, particularly as regards the regulation and physiological role of fatty acid catabolism throughout the higher plant life cycle.  相似文献   

5.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   

6.
Thyroid hormone, via its nuclear receptors TRalpha and TRbeta, controls metabolism by acting locally in peripheral tissues and centrally by regulating sympathetic signaling. We have defined aporeceptor regulation of metabolism by using mice heterozygous for a mutant TRalpha1 with low affinity to T3. The animals were hypermetabolic, showing strongly reduced fat depots, hyperphagia and resistance to diet-induced obesity accompanied by induction of genes involved in glucose handling and fatty acid metabolism in liver and adipose tissues. Increased lipid mobilization and beta-oxidation occurred in adipose tissues, whereas blockade of sympathetic signaling to brown adipose tissue normalized the metabolic phenotype despite a continued perturbed hormone signaling in this cell type. The results define a novel and important role for the TRalpha1 aporeceptor in governing metabolic homeostasis. Furthermore, the data demonstrate that a nuclear hormone receptor affecting sympathetic signaling can override its autonomous effects in peripheral tissues.  相似文献   

7.
Amino acid transport via system A plays an important role during lactation, promoting the uptake of small neutral amino acids, mainly alanine and glutamine. However, the regulation of gene expression of system A [sodium-coupled neutral amino acid transporter (SNAT)2] in mammary gland has not been studied. The aim of the present work was to understand the possible mechanisms of regulation of SNAT2 in the rat mammary gland. Incubation of gland explants in amino acid-free medium induced the expression of SNAT2, and this response was repressed by the presence of small neutral amino acids or by actinomycin D but not by large neutral or cationic amino acids. The half-life of SNAT2 mRNA was 67 min, indicating a rapid turnover. In addition, SNAT2 expression in the mammary gland was induced by forskolin and PMA, inducers of PKA and PKC signaling pathways, respectively. Inhibitors of PKA and PKC pathways partially prevented the upregulation of SNAT2 mRNA during adaptive regulation. Interestingly, SNAT2 mRNA was induced during pregnancy and to a lesser extent at peak lactation. beta-Estradiol stimulated the expression of SNAT2 in mammary gland explants; this stimulation was prevented by the estrogen receptor inhibitor ICI-182780. Our findings clearly demonstrated that the SNAT2 gene is regulated by multiple pathways, indicating that the expression of this amino acid transport system is tightly controlled due to its importance for the mammary gland during pregnancy and lactation to prepare the gland for the transport of amino acids during lactation.  相似文献   

8.
In the mouse mammary gland, homeobox gene expression patterns suggest roles in development and neoplasia. In the human breast, we now identify a family of Iroquois-class (IRX) homeobox genes. One gene, IRX-2, is expressed in discrete epithelial cell lineages being found in ductal and lobular epithelium, but not in myoepithelium. Expression is absent from associated mesenchymal adipose stroma. During gland development, expression is concentrated in terminal end buds and terminal lobules and is reduced in a subset of epithelial cells during lactation. In contrast to observations for many homeobox genes in the mouse mammary gland in which homeobox gene expression is lost on neoplastic progression, IRX-2 expression is maintained in human mammary neoplasias. Data suggest IRX-2 functions in epithelial cell differentiation and demonstrate regulated expression during ductal and lobular proliferation as well as lactation.  相似文献   

9.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

10.
11.
12.
13.
Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.  相似文献   

14.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malic enzyme are enzymes involved in NADPH synthesis. Their specific activities and glucose utilization by isolated cell systems have been measured in adipose tissue and mammary gland from mid-lactating rats during starvation/refeeding transition. Starvation for 24 h produced a 75-90% decrease in the specific activities of these NADPH producing systems in mammary gland. Acinis isolated from the gland of starved rats had a lower production of CO2, fatty acids and triacylglycerols from (1-14C)glucose and (6-14C)-glucose than did gland from control rats. The activities of these enzymes in adipose tissue were very low and did not undergo any measurable alteration with starvation. The ability of adipocytes from well fed lactating rats to synthesize fatty acids from (1-14C)glucose was completely blocked. However, starvation is accompanied by a marked decrease in glucose incorporation into triacylglycerols. All the variations observed "in vivo" and "in vitro" in mammary gland returned almost to normal values by refeeding the starved lactating rats.  相似文献   

15.
16.
A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3'UTRs of candidate genes.  相似文献   

17.
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.  相似文献   

18.
Fatty acid synthetase enzymes were purified from the liver, mammary gland, and adipose tissue of rats and the liver and mammary gland of mice. The enzymes from the liver and mammary gland of the same species have similar molecular weights and and dissociate into subunits at comparable rates.Rabbit antisera were prepared against the fatty acid synthetase from the lactating rat mammary gland. Cross-reactivity between different fatty acid synthetases was determined by immunodiffusion and immunoprecipitin tests. No differences in immunological cross-reactivity could be detected in liver, mammary gland, and adipose enzymes from the same species; fatty acid synthetases from the rat and mouse gave reactions of incomplete identity. Partially purified fatty acid synthetases from pigeon liver and rabbit mammary gland did not react with the antiserum.It is concluded that the immunochemical approach is useful in determining the degree of resemblance between fatty acid synthetases from different species. Within a given species, the liver and mammary gland fatty acid synthetases seem to be very similar, if not identical, proteins.  相似文献   

19.
20.
Cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDE-A) was first identified by its sequence homology with the N-terminal domain of DNA fragmentation factor (DFF). CIDE-A negatively regulates the activity of uncoupling protein 1 (UCP1) in brown adipose tissue. CIDE-A and UCP1 mRNA were detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and lactating bovine mammary glands. Physiological concentrations of saturated fatty acids (stearate and palmitate), but not unsaturated fatty acids (oleate and linoleate) induced up-regulation of CIDE-A mRNA in bMEC. Treatment with insulin (5-10 ng/ml) induced down-regulation of CIDE-A and UCP1. The expression levels of CIDE-A and UCP1 mRNA in bovine mammary glands at various stages of the lactation cycle were determined by quantitative RT-PCR analysis. CIDE-A mRNA expression at peak lactation (2 months after parturition) was significantly higher than at dry off and non-pregnancy but not late lactation. These results suggest that CIDE-A and UCP1 are regulated by insulin and/or fatty acids in mammary epithelial cells and lactating mammary glands, and thereby play an important role in lipid and energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号