首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cardiopulmonary effects of recombinant interleukin-2 infusion in sheep   总被引:1,自引:0,他引:1  
The systemic administration of recombinant interleukin-2 (rIL-2) with or without lymphokine-activated killer (LAK) cells, a new treatment for patients with advanced cancer, is associated with a presumed "third-space" syndrome. To further define the extent and time course of this toxicity, we established a chronic sheep model and monitored changes in systemic and central vascular pressures, cardiac function, and gas exchange during a 72-h continuous intravenous infusion of rIL-2 at a total dose of 5 (group 3) or 9 x 10(5) U/kg (group 4). At 72 h, caudal mediastinal lymph flow, histology, and extravascular lung water-to-dry lung weight ratio (EVLW/DLW) were obtained. During the rIL-2 infusion there was a dose-dependent significant decrease in systemic blood pressure and arterial Po2 and an increase in core temperature. In group 4, pulmonary arterial pressure increased from a base line of 13 +/- 5 to 21 +/- 6 mmHg (P less than 0.05). Lung lymph flow was significantly increased in groups 3 and 4 compared with animals receiving 0.9% NaCl or excipient infusions (groups 1 and 2). EVLW/DLW values were elevated in groups 3 and 4 (P less than 0.01). In animals receiving rIL-2, histological evaluation revealed a dose-dependent infiltration of lung tissue by lymphoblastoid cells that stained esterase negative. We conclude that rIL-2 infusion in doses comparable to those given to humans results in alterations in systemic and central hemodynamics, gas exchange, high-protein lung lymph flow, and infiltration of lymphoblastoid cells into the lung parenchyma.  相似文献   

2.
We investigated the effect of intravenous isotonic crystalloid solution infusion on lung lymph flow. Tracheobronchial lung lymph vessels were cannulated in 13 anesthetized dogs. The lymph flow rate was measured 1) with the lymph flowing against atmospheric pressure (QL), and 2) with the pressure at the outflow end of the lymph cannula equal to systemic venous pressure (QLV). QL and QLV were measured alternately in each lymph vessel. In one group of nine dogs, the base-line QL and QLV were 18 +/- 9 and 13 +/- 6 (SD) microliter/min, respectively (P less than 0.05). QL increased by 4.8 +/- 1.4-fold, and QLV increased by 3.5 +/- 2.1-fold during a 4-h infusion of 25 ml X kg-1 X h-1 of Ringer solution. QLV was significantly less than QL at all times. The increases in lymph flow were caused primarily by a reduction in the effective resistance of the lymph vessels with little rise in the pressure driving lymph from the lungs. Because QLV flowed against systemic venous pressure, the increase in QLV was blunted by a 3.1 +/- 2.3 cmH2O rise in venous pressure during the infusions. In the remaining four dogs, we infused Ringer solution rapidly in order to raise venous pressure to greater than 15 cmH2O. This caused QL to increase by 25 +/- 7-fold; however, QLV decreased to zero. We conclude that elevations in venous pressure which occur during volume infusions oppose lung lymph flow and lead to accumulation of excess fluid in the lungs.  相似文献   

3.
It has been suggested that coronary ischemia increases extravascular lung water. To determine whether pulmonary microvascular permeability is increased by coronary ischemia, we measured pulmonary hemodynamics, lung lymph flow (QL), and lymph-to-plasma protein concentration ratio (L/P) in 12 sheep with chronic lung lymph fistulas. Studies were done in 3 groups: in group 1 (n = 7) a marginal branch of the left circumflex artery (Lcx) was occluded, in group 2 (n = 5) left atrial pressure (Pla) was mechanically raised by 10 mmHg, and in group 3 (n = 5) Lcx was occluded and Pla was raised by 10 mmHg. In group 1, coronary occlusion increased QL (4.6 +/- 0.4 to 8.3 +/- 2.6 ml/h) without changes in L/P. In group 2, elevated Pla increased QL (5.1 +/- 1.2 to 10.1 +/- 3.0 ml/h) with decreases in L/P (0.71 +/- 0.02 to 0.61 +/- 0.02). In group 3, coronary occlusion with elevated Pla caused a further increase in QL (5.0 +/- 1.5 to 16.9 +/- 4.6 ml/h) without significant decreases in L/P (0.71 +/- 0.01 to 0.65 +/- 0.06). Lung lymph concentrations of 6-keto-prostaglandin F1 alpha (a degradation product of prostacyclin) increased transiently after coronary occlusion. These results indicate that coronary occlusion can increase transcapillary protein transport in lungs of conscious sheep and simultaneously increase prostacyclin production in the lung.  相似文献   

4.
We examined the effects of varying levels of alveolar hypoxia on regional distribution of pulmonary blood flow (QL) in control-ventilated sheep. Regional distribution of QL was measured using 15-micron-diam labeled microspheres during the base-line period and at two levels of hypoxemia (arterial O2 partial pressure 44 and 20 Torr). During the base-line period, regional distribution of QL in the prone position was uniform [14 +/- 4% (SE) of QL/g bloodless dry lung wt in the upper lung and 16 +/- 2% of QL/g in the dependent lung]. During hypoxemia, however, the regional distribution of QL increased in the upper lung (20 +/- 3% of QL/g) while it decreased in the dependent lung (10 +/- 2% of QL/g). The degree of flow distribution was proportional to the severity of hypoxemia. The flow distribution was not associated with significant increases in pulmonary blood flow (2.0 +/- 0.4----2.4 +/- 0.5----2.6 +/- 0.1 l/min) but was associated with increases in mean pulmonary arterial pressure (17.8 +/- 1.3----21.7 +/- 1.1----29.0 +/- 3.8 Torr). Therefore alveolar hypoxia results in a relative increase in regional pulmonary perfusion to the upper lung, which depends on the level of pulmonary hypertension. The increased upper lung perfusion may be due to recruitment in the upper lung or to vasodilation in this region.  相似文献   

5.
To study the effects of inflation pressure and tidal volume (VT) on protein permeability in the neonatal pulmonary microcirculation, we measured lung vascular pressures, blood flow, lymph flow (QL), and concentrations of protein in lymph (L) and plasma (P) of 22 chronically catheterized lambs that received mechanical ventilation at various peak inflation pressures (PIP) and VT. Nine lambs were ventilated initially with a PIP of 19 +/- 1 cmH2O and a VT of 10 +/- 1 ml/kg for 2-4 h (base line), after which we overexpanded their lungs with a PIP of 58 +/- 3 cmH2O and a VT of 48 +/- 4 ml/kg for 4-8 h. QL increased from 2.1 +/- 0.4 to 13.9 +/- 5.0 ml/h. L/P did not change, but the ratio of albumin to globulin in lymph relative to the same ratio in plasma decreased, indicating altered protein sieving in the pulmonary microcirculation. Seven other lambs were mechanically ventilated for 2-4 h at a PIP of 34 +/- 1 cmH2O and a VT of 23 +/- 2 ml/kg (base line), after which their chest and abdomen were bound so that PIP increased to 54 +/- 1 cmH2O for 4-6 h without a change in VT. QL decreased on average from 2.8 +/- 0.6 to 1.9 +/- 0.3 ml/h (P = 0.08), and L/P was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Our purpose was to determine the effect of an endotoxin-induced lung injury on circulating lipid peroxides. We measured both malondialdehyde (MDA) and conjugated dienes (as optical density at 233 nm) in aortic and venous plasma and lung lymph in 10 unanesthetized sheep given 1 microgram/kg of Escherichia coli endotoxin. Total lipids and prostanoids 6-ketoprostaglandin F1 alpha and thromboxane B2 were also measured. Six control sheep were also studied. Animals were monitored for a 12-h period and then killed, and lung tissue MDA was determined. A two-phase endotoxin response was noted with an initial pulmonary hypertension followed by a steady-state increase in protein-rich lung lymph flow (QL) between a 3- and 6-h period. Aortic plasma MDA was significantly increased from a base line of 4.8 +/- 1.4 to 8.9 +/- 1.6 and 7.5 +/- 1.3 nmol/ml at 1 and 4 h post-endotoxin. Aortic plasma conjugated dienes increased in all 10 sheep post-endotoxin. Venous levels of both MDA and conjugated dienes were not significantly increased. Lung QL increased two- to three-fold. Lung lymph MDA increased significantly at 1 h post-endotoxin. Lymph conjugated dienes decreased. Plasma and lymph lipid peroxide levels returned to base line by 12 h in most animals. However, tissue MDA remained significantly increased in all sheep from base line of 45 +/- 9 to 85 +/- 14 nmol/g tissue. We conclude that both MDA and conjugated dienes are transiently released into aortic plasma during endotoxin-induced oxidant lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

8.
Plasma fibronectin modulates macrophage phagocytic function and can also incorporate into the insoluble tissue pool of fibronectin where it influences endothelial cell adhesion and tissue integrity. We studied the effect of postoperative bacteremia on lung protein clearance in relation to plasma fibronectin levels using the unanesthetized sheep lung lymph fistula model and the effect of infusion of purified human plasma fibronectin on lung protein clearance. Sheep received live Pseudomonas aeruginosa (5 X 10(8) iv) at a time of normal plasma fibronectin (590 +/- 37 micrograms/ml) or 5 days later at a time corresponding to elevation of plasma fibronectin (921 +/- 114 micrograms/ml). After the first bacterial challenge, there was a 22% decrease (P less than 0.05) in plasma fibronectin. Lung lymph flow (QL) initially increased 308% (P less than 0.05) by 2 h (0 h = 4.7 +/- 1.1 ml/h; 2 h = 14.4 +/- 3.5 ml/h), and the total protein lymph-to-plasma concentration ratio (L/P) declined. This was followed by a sustained second phase response over 3-12 h which was characterized by a 202-393% elevation in QL (P less than 0.05), an increase in the L/P ratio, and a 240-480% (P less than 0.05) increase in lung transvascular protein clearance (TVPC = QL X L/P). Sheep with elevated fibronectin levels also manifested the early (2 h) elevation in QL (P less than 0.05) coupled with a decline in L/P ratio after the second bacterial challenge, but the second-phase increase in TVPC was markedly attenuated. Intravenous infusion of 500 mg of human plasma fibronectin into normal sheep to elevate the fibronectin level comparable to that in the hyperfibronectinemic sheep also attenuated (P less than 0.05) the second-phase (3-12 h) increase in lung protein clearance with sepsis. Thus elevation of plasma fibronectin during postoperative Gram-negative bacteremia may protect the lung vascular barrier. This response may be mediated by either fibronectin's opsonic support of phagocytic function or its influence on lung endothelial cell adhesion.  相似文献   

9.
The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury.  相似文献   

10.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

11.
We investigated whether platelet-activating factor (PAF) mediates endotoxin-induced systemic and pulmonary vascular derangements by studying the effects of a selective PAF receptor antagonist, SRI 63-441, during endotoxemia in sheep. Endotoxin infusion (1.3 micrograms/kg over 0.5 h) caused a rapid, transient rise in pulmonary arterial pressure (Ppa) from 16 +/- 3 to 36 +/- 10 mmHg (P less than 0.001) and pulmonary vascular resistance (PVR) from 187 +/- 84 to 682 +/- 340 dyn.s.cm-5 (P less than 0.05) at 0.5 h, followed by a persistent elevation in Ppa to 22 +/- 3 mmHg and in PVR to 522 +/- 285 dyn.s.cm-5 at 5 h in anesthetized sheep. Arterial PO2 (PaO2) decreased from 341 +/- 79 to 198 +/- 97 (P less than 0.01) and 202 +/- 161 Torr at 0.5 and 5 h, respectively (inspired O2 fraction = 1.0). SRI 63-441, 20 mg.kg-1.h-1 infused for 5 h, blocked the early rise in Ppa and PVR and fall in PaO2, but had no effect on the late phase pulmonary hypertension or hypoxemia. Endotoxin caused a gradual decrease in mean aortic pressure, which was unaffected by SRI 63-441. Infusion of SRI 63-441 alone caused no hemodynamic alterations. In follow-up studies, endotoxin caused an increase in lung lymph flow (QL) from 3.8 +/- 1.1 to 14.1 +/- 8.0 (P less than 0.05) and 12.7 +/- 8.6 ml/h at 1 and 4 h, respectively. SRI 63-441 abolished the early and attenuated the late increase in QL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effect of outflow pressure on lung lymph flow in unanesthetized sheep   总被引:2,自引:0,他引:2  
Studies in anesthetized animals have shown that the flow rate from lung lymphatics (QL) depends on the pressure at the outflow end of the vessels (Po). We tested this in unanesthetized sheep prepared with chronic lung lymph cannula. We measured QL with the lymph cannula held at various heights above the olecranon and calculated Po as the height + QL X cannula resistance. QL decreased with increases in Po (delta QL/delta Po = -8.2 +/- 6.4 microliter X min-1 X cmH2O-1, mean +/- SD). We increased QL by raising left atrial pressure or infusing Ringer solution or Escherichia coli endotoxin and found that QL was even more sensitive to Po (delta QL/delta Po = -32 +/- 22). Cannula resistance caused a 9-70% reduction in QL. Changes in QL caused by increasing Po were not associated with changes in lymph protein concentration for up to 330 min. This indicates that increases in Po shunt lymph away from cannulated vessels but do not substantially effect microvascular filtration rate. The shunted lymph may flow into other vessels or collect in the lung. We conclude that QL does not accurately represent microvascular filtration rate because it depends on the cannula resistance and position at which the investigator chooses to place the cannula.  相似文献   

13.
To examine the role of thromboxane (Tx) A2 in the pathogenesis of acute lung injury caused by tumor necrosis factor alpha (TNF), we tested the effects of OKY-046, a selective thromboxane synthase inhibitor, on pulmonary hemodynamics, lung lymph balance, circulating leukocytes, arterial blood gas analysis, and TxA2 (as TxB2) and prostacyclin (as 6-keto-prostaglandin F1 alpha) levels in plasma and lung lymph after TNF infusion in awake sheep. Infusion of human recombinant TNF (3.5 micrograms/kg) into a chronically instrumented awake sheep caused a transient increase in pulmonary arterial pressure (Ppa). The Ppa peaked within 15 min of the start of TNF infusion from 23.3 +/- 1.1 (SE) cmH2O of baseline to 42.3 +/- 2.3 cmH2O and then decreased toward baseline. The pulmonary hypertension was accompanied by transient hypoxemia, peripheral leukopenia, and the increases in TxB2 in plasma and lung lymph. These changes were followed by an increase in flow of protein-rich lung lymph, consistent with an increase in pulmonary microvascular permeability. OKY-046 significantly prevented the rises of Ppa and TxB2 concentrations in plasma and lung lymph during early phase after TNF infusion. OKY-046, however, did not attenuate the increase of lung lymph flow, transient hypoxemia, and leukopenia. From these data, and by comparison with our previous studies of OKY-046-pretreated sheep during endotoxemia, we conclude that TxA2 has an important role of the increase in the early pulmonary hypertension, but it is not related to the early hypoxemia, leukopenia, and lung lymph balances in TNF-induced lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eight patients affected by non-small-cell lung cancer were treated with intralesional and systemic recombinant IL-2(rIL-2) injection with the aim of activating both tumour-infiltrating lymphocytes and circulating cytotoxic or killer cells. The schedule of treatment was as follows: a daily fine-needle transparietal intralesional rIL-2 injection (1×105 Cetus units) from day 1 to day 5 and systemic rIL-2 infusion (1×105 Cetus units kg–1 day–1) from day 6 to day 10. One to four cycles of treatment were received by each patient. Clinical and immunological evaluations were performed (a) before treatment, (b) following the intralesional rIL-2 administration, (c) 1 h after the beginning of rIL-2 infusion and (d) at the end of the systemic rIL-2 infusion. No complete remission was achieved, two patients showed a partial remission, three resulted in stable disease and three patients progressed. Natural killer and lymphokine-activated killer cell activity dramatically decreased 1 h after the beginning of rIL-2 infusion and increased at the end of treatment. A progressive increase of circulating CD8+ and HLA class II+ T cells as well as of CD8+ T cell clones, most of which displayed NK activity, was recorded following rIL-2 infusion. Present data indicate that (a) the local administration of rIL-2 coupled with systemic rIL-2 infusion may be suggested as an alternative approach for the immunotherapy of lung cancer, (b) rIL-2 induces different immunological modifications according to the route and the time of its administration and (c) rIL-2 administration increases the amount of circulating immune cells with potential antitumour activity.  相似文献   

15.
An intravenous infusion of endotoxin into sheep results in accumulation of equal numbers of lymphocytes and granulocytes in the pulmonary microcirculation. The role of the sequestered lymphocytes in acute lung injury is not known. The present study examines whether lymphocyte migration through pulmonary endothelium contributes to endothelial damage and also examines the effect of lymphokines on granulocyte migration. Bovine pulmonary artery intimal explants were mounted in Boyden chambers and conditioned media, prepared from bovine peripheral blood lymphocytes, was used as the chemoattractant. The rate of 51Cr labelled bovine granulocyte lymphocyte migration into intimal explants was determined over a 3 hr incubation period. Permeability changes were assessed by adding trace amounts of 14C-sucrose and 3H-water to the upper well and following their rate of equilibration with the lower well. 6-Keto-PGF1 alpha was measured in the upper well. Lymphocyte conditioned media was found to be chemotactic for both lymphocytes and granulocytes (lymphocyte migration at 60 min: lymphocyte conditioned media = 18.5 +/- 2.3%, mean +/- s.e. RPMI control = 12.5 +/- 1.5; granulocyte migration at 120 min: conditioned media = 36.1 +/- 5.7, RPMI control = 18.2 +/- 3.0). Ultrastructural examination revealed leukocyte migration followed an orderly sequence during which the leukocytes maintained close contact with the adjacent endothelial cells. No structural evidence of endothelial cell damage was seen at any time examined. Granulocyte migration was associated with an increased rate of 14C-sucrose equilibration after 2 hr of incubation (lower well counts/upper well counts at 2 hr, RPMI control = 0.18 +/- 0.02; lymphocyte conditioned medium = 0.30 +/- 0.04) indicating alteration in the endothelial barrier function. Leukocyte migration, particularly lymphocyte migration, was accompanied by a marked increase in prostacyclin accumulation (3 hr: no leukocytes, 188 +/- 17 ng/ml; lymphocytes, 560 +/- 104). These in vitro findings suggest that lymphocytes and lymphokines may be involved in acute lung injury and also that permeability changes associated with granulocyte migration may depend on the chemoattractant.  相似文献   

16.
We investigated the contribution of the bronchial blood flow to the lung lymph flow (QL) and lung edema formation after inhalation injury in sheep (n = 18). The animals were equally divided into three groups and chronically prepared by implantation of cardiopulmonary catheters and a flow probe on the common bronchial artery. Groups 1 and 2 sheep were insufflated with 48 breaths of cotton smoke while group 3 received only room air. Just before injury, the bronchial artery of group 2 animals was occluded. The occlusion was maintained for the duration of the 24-h study period. At the end of the investigation, samples of lung were taken for determination of blood-free wet weight-to-dry weight ratio (W/D). Inhalation injury induced a sevenfold increase in QL in group 1 (7 +/- 1 to 50 +/- 9 ml/h; P less than 0.05) but only a threefold increase in group 2 (10 +/- 2 to 28 +/- 7 ml/h; P less than 0.05). The mean W/D value of group 1 animals was 23% higher than that of group 2 (5.1 +/- 0.4 vs. 3.9 +/- 0.2; P less than 0.05). Our data suggest that the bronchial circulation contributes to edema formation in the lung that is often seen after the acute lung injury with smoke inhalation.  相似文献   

17.
To investigate the acute physiological and structural changes after lung irradiation, the effects of whole-lung irradiation were investigated in fourteen sheep. Ten sheep were prepared with vascular and chronic lung lymph catheters, then a week later were given 1,500 rad whole-lung radiation and monitored for 2 days. Four sheep were given the same dose of radiation and were killed 4 h later for structural studies. Lung lymph flow increased at 3 h after radiation (14.6 +/- 2.1 ml/h) to twice the base-line flow rate (7.5 +/- 1.3), with a high lymph-to-plasma protein concentration. Pulmonary arterial pressure increased twofold from base line (18 +/- 1.6 cmH2O) at 2 h after radiation (33 +/- 3.8). Cardiac output and systemic pressure in the aorta did not change after lung radiation. Arterial O2 tension decreased from 85 +/- 3 to 59 +/- 4 Torr at 1 day after radiation. Lymphocyte counts in both blood and lung lymph decreased to a nadir by 4 h and remained low. Thromboxane B2 concentration in lung lymph increased from base line (0.07 +/- 0.03 ng/ml) to peak at 3 h after radiation (8.2 +/- 3.7 ng/ml). The structural studies showed numerous damaged lymphocytes in the peripheral lung and bronchial associated lymphoid tissue. Quantitative analysis of the number of granulocytes in peripheral lung showed no significant change (base line 6.2 +/- 0.8 granulocytes/100 alveoli, 4 h = 10.3 +/- 2.3). The most striking change involved lung airways. The epithelial lining of the majority of airways from intrapulmonary bronchus to respiratory bronchiolus revealed damage with the appearance of intracellular and intercellular cell fragments and granules. This new large animal model of acute radiation lung injury can be used to monitor physiological, biochemical, and morphological changes after lung radiation. It is relevant to the investigation of diffuse oxidant lung injury as well as to radiobiology per se.  相似文献   

18.
We examined the effect of complement depletion on lung fluid and protein exchange after thrombin-induced pulmonary thromboembolization. Sheep were prepared with lung lymph fistulas to assess pulmonary transvascular fluid and protein dynamics. Studies were made in three groups: in group I (n = 5) pulmonary thromboembolization (PT) was induced by an iv infusion of thrombin (55.0 +/- 12.9 NIH U/kg); in group II (n = 6) cobra venom factor (CVF) was given ip (94.5 +/- 18.8 U/kg/day) for 2 days to deplete complement, and then thrombin (66.4 +/- 37.0 NIH U/kg) was infused to raise pulmonary vascular resistance to the same level as in group I; in group III (n = 10) left atrial pressure (Pla) was increased by 10-15 Torr in normal animals by inflation of a Foley balloon catheter. In group I, thrombin infusion caused an increase in pulmonary lymph flow (Qlym) with a gradual increase in the lymph-to-plasma protein concentration ratio (L/P). In complement-depleted sheep, thrombin caused a transient increase in Qlym, which was associated with a decrease in L/P. In group I an increase in Pla further increased Qlym but without a change in L/P, indicating an increase in lung vascular permeability to proteins; whereas in the decomplemented-thrombin sheep raising Pla increased Qlym but decreased L/P. Results in the latter group were similar to those obtained in normal animals after left atrial hypertension (group III). Therefore the complement system participates in the increase in lung vascular permeability following thrombin-induced microembolization.  相似文献   

19.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

20.
To assess the effects of alveolar hypoxia and angiotensin II infusion on distribution of blood flow to the lung we performed perfusion lung scans on anesthetized mechanically ventilated lambs. Scans were obtained by injecting 1-2 mCi of technetium-labeled albumin macroaggregates as the lambs were ventilated with air, with 10-14% O2 in N2, or with air while receiving angiotensin II intravenously. We found that both alveolar hypoxia and infusion of angiotensin II increased pulmonary vascular resistance and redistributed blood flow from the mid and lower lung regions towards the upper posterior region of the lung. We assessed the effects of angiotensin II infusion on filtration pressure in six lambs by measuring the rate of lung lymph flow and the protein concentration of samples of lung lymph. We found that angiotensin II infusion increased pulmonary arterial pressure 50%, lung lymph flow 90%, and decreased the concentration of protein in lymph relative to plasma. These results are identical to those seen when filtration pressure increases during alveolar hypoxia. We conclude that alveolar hypoxia and angiotensin II infusion both increase fluid filtration in the lung by increasing filtration pressure. The increase in filtration pressure may be the result of a redistribution of blood flow in the lung with relative overperfusion of vessels in some areas and transmission of the elevated pulmonary arterial pressure to fluid-exchanging sites in those vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号