首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mitotic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or the focusing of spindle poles appears much less affected. The msps gene encodes a 227-kD protein with high similarity to the vertebrate microtubule-associated proteins (MAPs), human TOGp and Xenopus XMAP215, and with limited similarity to the Dis1 and STU2 proteins from fission yeast and budding yeast. Consistent with their sequence similarity, Msps protein also associates with microtubules in vitro. In the embryonic division cycles, Msps protein localizes to centrosomal regions at all mitotic stages, and spreads over the spindles during metaphase and anaphase. The absence of centrosomal staining in interphase of the cellularized embryos suggests that the interactions between Msps protein and microtubules or centrosomes may be regulated during the cell cycle.  相似文献   

2.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

3.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2–cyclinB1 complex). It has previously been demonstrated that the p34cdc2–cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215–cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

4.
Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat-containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.  相似文献   

5.
The TOG/XMAP215-related proteins play a role in microtubule dynamics at its plus end. Fission yeast Alp14, a newly identified TOG/XMAP215 family protein, is essential for proper chromosome segregation in concert with a second homologue Dis1. We show that the alp14 mutant fails to progress towards normal bipolar spindle formation. Intriguingly, Alp14 itself is a component of the Mad2-dependent spindle checkpoint cascade, as upon addition of microtubule-destabilizing drugs the alp14 mutant is incapable of maintaining high H1 kinase activity, which results in securin destruction and premature chromosome separation. Live imaging of Alp14-green fluorescent protein shows that during mitosis, Alp14 is associated with the peripheral region of the kinetochores as well as with the spindle poles. This is supported by ChIP (chromatin immunoprecipitation) and overlapping localization with the kinetochore marker Mis6. An intact spindle is required for Alp14 localization to the kinetochore periphery, but not to the poles. These results indicate that the TOG/XMAP215 family may play a central role as a bridge between the kinetochores and the plus end of pole to chromosome microtubules.  相似文献   

6.
Members of the transforming acidic coiled coil (TACC) protein family are emerging as important mitotic spindle assembly proteins in a variety of organisms. The molecular details of how TACC proteins function are unknown, but TACC proteins have been proposed to recruit microtubule-stabilizing proteins of the tumor overexpressed gene (TOG) family to the centrosome and to facilitate their loading onto newly emerging microtubules. Using Xenopus egg extracts and in vitro assays, we show that the Xenopus TACC protein maskin is required for centrosome function beyond recruiting the Xenopus TOG protein XMAP215. The conserved C-terminal TACC domain of maskin is both necessary and sufficient to restore centrosome function in maskin-depleted extracts, and we provide evidence that the N terminus of maskin inhibits the function of the TACC domain. Time-lapse video microscopy reveals that microtubule dynamics in Xenopus egg extracts are unaffected by maskin depletion. Our results provide direct experimental evidence of a role for maskin in centrosome function and suggest that maskin is required for microtubule anchoring at the centrosome.  相似文献   

7.
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.  相似文献   

8.
The Dis1/XMAP215 family of microtubule-associated proteins conserved from yeast to mammals is essential for cell division. XMAP215, the Xenopus member of this family, has been shown to stabilize microtubules in vitro, but other members of this family have not been biochemically characterized. Here we investigate the properties of the Saccharomyces cerevisiae homologue Stu2p in vitro. Surprisingly, Stu2p is a microtubule destabilizer that binds preferentially to microtubule plus ends. Quantitative analysis of microtubule dynamics suggests that Stu2p induces microtubule catastrophes by sterically interfering with tubulin addition to microtubule ends. These results reveal both a new biochemical activity for a Dis1/XMAP215 family member and a novel mechanism for microtubule destabilization.  相似文献   

9.
XMAP215 belongs to a family of proteins involved in the regulation of microtubule dynamics. In this study we analyze the function of different parts of XMAP215 in vivo and in Xenopus egg extracts. XMAP215 has been divided into three fragments, FrN, FrM and FrC (for N-terminal, middle and C-terminal, respectively). FrN co-localizes with microtubules in egg extracts but not in cells, FrC co- localizes with microtubules and centrosomes both in egg extracts and in cells, while FrM does not co- localize with either centrosomes or microtubules. In Xenopus egg extracts, FrN stimulates microtubule growth at plus-ends by inhibiting catastrophes, while FrM has no effect, and FrC suppresses microtubule growth by promoting catastrophes. Our results suggest that XMAP215 is targeted to centrosomes and microtubules mainly through its C-terminal domain, while the evolutionarily conserved N-terminal domain contains its microtubule-stabilizing activity.  相似文献   

10.
In metaphase Xenopus egg extracts, global microtubule growth is mainly promoted by two unrelated microtubule stabilizers, end-binding protein 1 (EB1) and XMAP215. Here, we explore their role and potential redundancy in the regulation of spindle assembly and function. We find that at physiological expression levels, both proteins are required for proper spindle architecture: Spindles assembled in the absence of EB1 or at decreased XMAP215 levels are short and frequently multipolar. Moreover, the reduced density of microtubules at the equator of ΔEB1 or ΔXMAP215 spindles leads to faulty kinetochore–microtubule attachments. These spindles also display diminished poleward flux rates and, upon anaphase induction, they neither segregate chromosomes nor reorganize into interphasic microtubule arrays. However, EB1 and XMAP215 nonredundantly regulate spindle assembly because an excess of XMAP215 can compensate for the absence of EB1, whereas the overexpression of EB1 cannot substitute for reduced XMAP215 levels. Our data indicate that EB1 could positively regulate XMAP215 by promoting its binding to the microtubules. Finally, we show that disruption of the mitosis-specific XMAP215–EB1 interaction produces a phenotype similar to that of either EB1 or XMAP215 depletion. Therefore, the XMAP215–EB1 interaction is required for proper spindle organization and chromosome segregation in Xenopus egg extracts.  相似文献   

11.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.  相似文献   

12.
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.  相似文献   

13.
Microtubules are essential for various cellular processes including cell division and intracellular organization. Their function depends on their ability to rearrange their distribution at different times and places. Microtubules are dynamic polymers and their behaviour is described as dynamic instability. Rearrangement of the microtubule cytoskeleton is made possible by proteins that modulate the parameters of dynamic instability. Studies using Xenopus egg extracts led to identification of a microtubule-associated protein called XMAP215 as a major regulator of physiological microtubule dynamics. XMAP215 belongs to an evolutionarily conserved protein family present in organisms ranging from yeast to mammals. Together with members of the Kin I family of kinesins, XMAP215 and its orthologues form an essential circuit for generating dynamic microtubules in vivo.  相似文献   

14.
Members of the XMAP215/Dis1 family of microtubule-associated proteins (MAPs) are essential for microtubule growth. MAPs in this family contain several 250 residue repeats, called TOG domains, which are thought to bind tubulin dimers and promote microtubule polymerization. We have determined the crystal structure of a single TOG domain from the Caenorhabditis elegans homolog, Zyg9, to 1.9 A resolution, and from it we describe a structural blueprint for TOG domains. These domains are flat, paddle-like structures, composed of six HEAT-repeat elements stacked side by side. The two wide faces of the paddle contain the HEAT-repeat helices, and the two narrow faces, the intra- and inter-HEAT repeat turns. Solvent-exposed residues in the intrarepeat turns are conserved, both within a particular protein and across the XMAP215/Dis1 family. Mutation of some of these residues in the TOG1 domain from the budding yeast homolog, Stu2p, shows that this face indeed participates in the tubulin contact.  相似文献   

15.
XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed tumor overexpressed gene (TOG) domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with α-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. Whereas a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse yet positionally conserved TOG array that drives MT polymerization.  相似文献   

16.
Brittle AL  Ohkura H 《The EMBO journal》2005,24(7):1387-1396
Drosophila Mini spindles (Msps) protein belongs to a conserved family of microtubule-associated proteins (MAPs). Intriguingly, this family of MAPs, including Xenopus XMAP215, was reported to have both microtubule stabilising and destabilising activities. While they are shown to regulate various aspects of microtubules, the role in regulating interphase microtubules in animal cells has yet to be established. Here, we show that the depletion or mutation of Msps prevents interphase microtubules from extending to the cell periphery and leads to the formation of stable microtubule bundles. The effect is independent of known Msps regulator or effector proteins, kinesin-13/KinI homologues or D-TACC. Real-time analysis revealed that the depletion of Msps results in a dramatic increase of microtubule pausing with little or no growth. Our study provides the first direct evidence to support a hypothesis that this family of MAPs acts as an antipausing factor to exhibit both microtubule stabilising and destabilising activities.  相似文献   

17.
The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.  相似文献   

18.
Microtubules are dynamic polymers that move stochastically between periods of growth and shrinkage, a property known as dynamic instability. Here, to investigate the mechanisms regulating microtubule dynamics in Xenopus egg extracts, we have cloned the complementary DNA encoding the microtubule-associated protein XMAP215 and investigated the function of the XMAP215 protein. Immunodepletion of XMAP215 indicated that it is a major microtubule-stabilizing factor in Xenopus egg extracts. During interphase, XMAP215 stabilizes microtubules primarily by opposing the activity of the destabilizing factor XKCM1, a member of the kinesin superfamily. These results indicate that microtubule dynamics in Xenopus egg extracts are regulated by a balance between a stabilizing factor, XMAP215, and a destabilizing factor, XKCM1.  相似文献   

19.
20.
TACC (transforming acidic coiled-coil) proteins were first identified by their ability to transform cell lines [1], and links between human cancer and the overexpression of TACC proteins highlight the importance of understanding the biological function of this family of proteins. Herein, we describe the characterization of a new member of the TACC family of proteins in Caenorhabditis elegans, TAC-1. In other systems, TACC proteins associate with the XMAP215 family of microtubule-stabilizing proteins; however, it is unclear whether TACC proteins have microtubule-based functions distinct from XMAP215. We depleted both the XMAP215 ortholog ZYG-9 and TAC-1 via dsRNA-mediated interference (RNAi). We found that tac-1(RNAi) resulted in microtubule-based defects that were very similar to zyg-9(RNAi). Furthermore, TAC-1 and ZYG-9 are required for long astral microtubules in general and long spindle microtubules during spindle assembly. Loss of either protein did not affect the alpha-tubulin immunofluorescence intensity near centrosomes; this finding suggests that microtubule nucleation was not compromised. Both proteins localize to centrosomes and the kinetochore/microtubule region of chromosomes in metaphase and early anaphase. Furthermore, we found that ZYG-9 and TAC-1 physically interact in vivo, and this interaction is important for the efficient localization of the ZYG-9/TAC-1 complex to centrosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号