首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental nutrient provision has evolved in multiple lineages of squamate reptiles and although possible structural specializations for placentotrophy have been described in a variety of species, neither the pathways nor the mechanisms of placental transfer are known. Lizards of the Australian genus Pseudemoia are placentotrophic and have elaborate placental structures that are thought to enhance nutrient transfer. The chorioallantoic placenta, which occupies the embryonic hemisphere of the egg, is regionally diversified into a large area with low epithelial height and a smaller placentome with cuboidal or columnar epithelia. Both regions are underlain by an extensive vascular bed. The abembryonic hemisphere of the egg is covered by an omphaloplacenta, which is similar to the placentome in having cuboidal or columnar epithelia but with a different embryonic vascular supply. We tested the hypothesis that embryonic epithelial cells of the placentome and the omphaloplacenta of Pseudemoia entrecasteauxii are each capable of endocytosis. Embryos (stages 33-39) with intact extraembryonic membranes were surgically removed from the uterus and incubated in a solution containing fluorescein isothiocyanate-dextran (77,000 MW). The fluorescent label was detected in the cytoplasm of scattered populations of epithelial cells in both placental regions of all embryonic stages. We conclude that both the placentome and the omphaloplacenta of P. entrecasteauxii are sites of histotrophic nutrient transport. However, there are histological and cytological differences in the embryonic epithelia of these two placental regions. The histological differences reflect differences in the evolutionary precursors of each tissue. The cytological differences likely portray different functional specializations.  相似文献   

2.
Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal–embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical‐shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85–90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin‐D28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin‐D28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin‐D28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin‐D28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin‐D28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Analysis of placentation in the final stages of development in Mabuya mabouya shows that the placenta is formed by the apposition of the chorioallantois to the uterine mucosa implicating the entire embryonic chamber, because the allantoic vesicle invades all the exocoelom. The chorioallantoic placenta presents the features proper of a type IV allantoplacenta. However, in the mesometrial area peripheral to the placentome, we found that the paraplacentome is an additional zone specialized for histotrophic transfer, and is separated from the rest of the embryonic chamber by a chorionic invagination formed of polymorphic cells. The chorionic areolae are components of the embryonic hemisphere; they are in apposition to an endometrium with columnar epithelial cells and several glands that secrete toward the cavity of the areolae. They are observed only in the preparturition stage, probably operating in maternal-fetal transfer of nutrients during the last embryonic growth stage. The mesometrial hemisphere possesses specializations related to histotrophic nutrition (placentome, paraplacentome, and chorionic areolae), while in the abembryonic hemisphere there is an allantoplacenta of mixed function, with capacity for histotrophic nutrition and for gas exchange. The absorptive plaques are small rounded areas constituted by chorionic cells similar to the paraplacentomal chorionic cells, in intimate apposition with a secretory uterine epithelium. Separating the absorptive plaques are respiratory segments histologically similar to the type I allantoplacenta. The additional histotrophic areas found for this species demonstrate the great specialization of this allantoplacenta, and support the highest degree of matrotrophy among reptiles reached in the Neotropical Mabuya.  相似文献   

4.
The viviparous African skink, Eumecia anchietae, exhibits a matrotrophic fetal nutritional pattern. Until well after the limb bud stage, extravitelline nutritional provision is in the form of holocrine secretion originating from the stratified uterine epithelium of the uterine incubation chambers. Uterine secretions are absorbed by a specialized yolk sac ectoderm and chorioallantois through histotrophy. The yolk sac is not in close contact with the uterine lining from the limb bud stage onwards. The yolk sac ectoderm forms invaginations filled with uterine secretion and consists of a single layer of vacuolated hypertrophied cells bearing microvilli. The chorioallantois at the limb bud stage is extensive, well-vascularized, and not intimately associated with the uterine epithelium. Where the uterus is folded, the chorioallantois may interdigitate loosely. Chorionic cells are low to high columnar, clearly vacuolated, and bear microvilli. The allantoic layer consists primarily of squamous cells exhibiting villous projections. By the time embryos have well-defined digits, the specialized yolk sac ectoderm has regressed and the yolk sac lumen has been invaded by vitelline cells. The chorioallantois is very extensive and in areas greatly folded. Where it contacts the uterine epithelium, a proper chorioallantoic placenta is formed. Cell layers of the chorioallantois and uterine epithelium are thin and cuboidal to squamous in appearance. The chorioallantoic placenta is simple in structure, occurs throughout the incubation chamber, and is epitheliochorial in arrangement. It is unknown whether the placentome observed in other highly matrotrophic scincids is formed in late stage embryos of this species.  相似文献   

5.
A prominent scenario for the evolution of reptilian placentation infers that placentotrophy arose by gradual modification of a simple vascular chorioallantoic placenta to a complex structure with a specialized region for nutrient transfer. The structure of the chorioallantoic placenta of Niveoscincus ocellatus, apparently described originally from a single embryonic stage, was interpreted as a transitional evolutionary type that provided support for the model. Recently, N. ocellatus has been found to be as placentotrophic as species with complex chorioallantoic placentae containing a specialized region called a placentome. We studied placental development in N. ocellatus and confirmed that the chorioallantoic placenta lacks specializations found in species with a placentome. We also found that this species has a specialized omphaloplacenta. The chorioallantoic placenta is confined to the region adjacent to the embryo by a membrane, similar to that found in some other viviparous skinks, that divides the egg into embryonic and abembryonic hemispheres. We term this structure the "inter-omphalopleuric" membrane. The position of this membrane in N. ocellatus is closer to the embryonic pole of the egg than to the abembryonic pole and thus the surface area of the omphaloplacenta is greater than that of the chorioallantoic placenta. In addition, the omphaloplacenta is regionally diversified and more complex histologically than the chorioallantoic placenta. An impressive and unusual feature of the omphaloplacenta of N. ocellatus is the development of extensive overlapping folds in the embryonic component of mid-gestation embryos. The histological complexity and extensive folding of the omphaloplacenta make this a likely site of placental transfer of nutrients in this species.  相似文献   

6.
Examination of late-stage placental material of the lizard Chalcides chalcides from the Hubrecht Laboratorium (Utrecht, The Netherlands) reveals several cytological and histological specializations that appear to have been superimposed over a morphological pattern that is typical for squamates. The chorioallantoic placenta is highly vascularized and consists of a single mesometrial placentome and a generalized paraplacentomal region, both of which are epitheliochorial. The placentome is deciduate, and contains deeply interdigitating folds of hypertrophied uterine and chorioallantoic tissue. Chorionic epithelium lining the placentome comprises enlarged, microvilliated cells, a small proportion of which are diplokaryocytes. The placentomal uterine epithelium is not syncytial and consists of enlarged cells bearing microvilli. The yolk sac placenta is a true omphaloplacenta (sensu stricto), being formed by juxtaposition of uterine tissues to an avascular, bilaminar omphalopleure. Epithelium of the omphalopleure is stratified and is hypertrophied into papillae that project into detritus of the uterine lumen. The omphalopleure is separated from the yolk sac proper by a yolk cleft that is not confluent with the exocoelom and is not invaded by the allantois. Neither an omphalallantoic placenta nor a true choriovitelline placenta is present in late gestation. Morphologically, the mature placentae of C. chalcides are among the most specialized to have been described in reptiles, reflecting the substantial maternal-fetal nutrient transfer that occurs in this species. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Virginia striatula is a viviparous snake with a complex pattern of embryonic nutrition. Nutrients for embryonic development are provided by large, yolked eggs, supplemented by placental transfer. Placentation in this species is surprisingly elaborate for a predominantly lecithotrophic squamate reptile. The embryonic-maternal interface consists of three structurally distinct areas, an omphalallantoic placenta and a regionally diversified chorioallantoic placenta. The chorioallantoic placenta over the embryonic hemisphere (paramesometrial region) of the egg, features close apposition of embryonic and uterine blood vessels because of the attenuate form of the interceding epithelial cells. The periphery of the chorioallantoic placenta, which is adjacent to the omphalallantoic placenta, is characterized by a simple cuboidal uterine epithelium apposed to a stratified cuboidal chorionic epithelium. There are no sites with attenuate epithelial cells and close vascular apposition. The morphology of the omphalallantoic placenta is similar to that of the peripheral chorioallantoic placenta, except that the height of uterine epithelial cells is greater and allantoic blood vessels are not associated with the embryonic epithelium. The functional capabilities of the three placental regions are not known, but structural characteristics suggest that the omphalallantoic placenta and peripheral zone of the chorioallantoic placenta are sites of nutritional provision via histotrophy. The paramesometrial region of the chorioallantoic placenta is also nutritive, in addition to functioning as the primary embryonic respiratory system. The structure of the chorioallantoic placenta of V. striatula is a new placental morphotype for squamate reptiles that is not represented by a classic model for the evolution of reptilian placentation.  相似文献   

8.
The evolution of viviparity alters the physical relationship between mothers and offspring and the prevalence of viviparity among squamate reptiles presents an opportunity to uncover patterns in the evolution of placental structure. Understanding the breadth of this diversity is limited because studies of placental structure and function have emphasized a limited number of lineages. We studied placental ontogeny using light microscopy for an embryological series of the Mexican gerrhonotine lizard, Mesaspis viridiflava. This species develops an elaborate yolk sac placenta, an omphaloplacenta, which receives vascular support arising in a structure known only from other gerrhonotine lizards. A prominent feature of the omphaloplacenta is a zone of uterine and embryonic epithelial cell hyperplasia located at the upper shoulder of the yolk mass, often extending above the yolk mass. The omphaloplacenta covers more than one-half of the surface area of maternal—embryonic contact. The chorioallantoic placenta has a more restricted distribution because the allantois remains in the embryonic hemisphere of the egg throughout development and lies internal to the vascular support for the omphaloplacenta in areas where they overlap. The structural profile of the chorioallantoic placenta indicates a potential for respiratory exchange and/or hemotrophic nutritive transport, while that of the omphaloplacenta suggests that nutritive transfer is primarily via histotrophy. An eggshell is present in the earliest embryonic stages examined but regresses relatively early in development. Placental specializations of this species are consistent with a pattern of matrotrophic embryonic nutrition and have evolved in a unique lineage specific developmental pattern.  相似文献   

9.
The aim of this review is to collate data relevant to understanding the evolution of viviparity in general, and complex placentae in particular. The wide range of reproductive modes exhibited by lizards provides a solid model system for investigating the evolution of viviparity. Within the lizards are oviparous species, viviparous species that have a very simple placenta and little nutrient uptake from the mother during pregnancy (lecithotrophic viviparity), through a range of species that have intermediate placental complexities and placental nutrient provision, to species that lay microlecithal eggs and most nutrients are provided across the placenta during development (obligate placentotrophy). In its commonest form, lecithotrophic viviparity, some uptake of water, inorganic ions and oxygen occurs from the mother to the embryo during pregnancy. In contrast, the evolution of complex placentae is rare, but has evolved at least five times. Where there is still predominantly a reliance on egg yolk, the omphaloplacenta seems to be paramount in the provision of nutrition to the embryo via histotrophy, whereas the chorioallantoic placenta is more likely involved in gas exchange. Reliance on provision of substantial organic nutrient is correlated with the regional specialisation of the chorioallantoic placenta to form a placentome for nutrient uptake, particularly lipids, and the further development of the gas exchange capabilities of the other parts of the chorioallantois.  相似文献   

10.
On days 7 and 8 of pregnancy, mesometrial regions of rat gestation sites were examined by light microscopy and transmission electron microscopy to determine what changes occur before the chorioallantoic placenta forms in that region. By day 7, gestation sites contained a uterine lumen mesometrially and an antimesometrial extension of the uterine lumen, the implantation chamber. The implantation chamber consisted of a mesometrial chamber between the uterine lumen and the conceptus, an antimesometrial chamber that contained the conceptus, and a decidual crypt antimesometrial to the conceptus. Stromal cells that formed the walls of the implantation chamber were closely packed decidual cells, while those that surrounded the uterine lumen were loosely arranged. Late on day 7, a portion of the epithelium lining the mesometrial chamber was degenerating, but this area of initial degeneration was never adjacent to the antimesometrial chamber. By early day 8, most of the epithelial cells lining the mesometrial chamber were degenerating and were being sloughed into the chamber lumen. Although degeneration of these epithelial cells morphologically resembled necrosis, it was precisely controlled, since adjacent epithelial cells lining the uterine lumen remained healthy. The space that separated the denuded luminal surface of the mesometrial chamber from underlying decidual cells became wider and was occupied by an extracellular matrix rich in cross-banded collagen fibrils. Decidual cell processes, that earlier had penetrated the basal lamina beneath healthy epithelial cells, protruded into this matrix and penetrated the basal lamina at the luminal surface. By late day 8, large areas of denuded chamber wall were covered with decidual cell processes, little remained of the basal lamina, and cross-banded collagen fibrils were scarce in the area occupied by decidual cell processes. During the times studied, uterine tissues that formed the walls of the mesometrial chamber were not in direct contact with the conceptus. This study indicates that trophoblast does not play a direct role in epithelial degeneration, basal lamina penetration, or extracellular matrix modifications in the mesometrial region of implantation chambers where part of the chorioallantoic placenta forms, although trophoblast may be required to trigger or modulate some of the changes.  相似文献   

11.
The uterus of the viviparous skink Chalcides ocellatus tiligugu was studied by SEM and LM during the annual cycle. Three functional phases were identified: preovulatory (spring), gestatory (summer), and quiescent (autumn-winter), characterized by changes in the uterine wall (mainly the endometrial layer). In the preovulatory phase, the uterine wall increases in thickness; its luminal epithelium has ciliated cells and two types of unciliated secretory cells. The first type secretes sulfated glycosaminoglycans (GAGs), which form the amorphous inner layer of the eggshell membrane; the second type secretes acidic glycoproteins that form the intrafibrillar matrix of the outer layer of the eggshell membrane. The lamina propria contains simple alveolar glands that secrete the collagen fibers of the eggshell membrane. During the gestatory phase, the glycoproteins produced by secretory cells of the second type have histotrophic activity for the developing embryo. The uterus widens to form incubation chambers with two hemispheres, one embryonic and the other abembryonic. Both a chorioallantoic placenta and an omphaloplacenta with histotrophic activity are present in late gestation. The chorioallantoic placenta, with aspects of a Weekes (1935) Type III placenta, develops in the embryonic hemisphere. The omphaloplacenta forms at the vegetative pole of the egg and shows cellular hypertrophy of the bilaminar omphalopleure and uterus. During the quiescent phase, the uterus gradually decreases in thickness and activity; its luminal epithelium does not show secretory activity. The annual variations in the myometrial layer involved the inner circular and the outer longitudinal muscle layers.  相似文献   

12.
New World skinks of the genus Mabuya exhibit a unique form of viviparity that involves ovulation of tiny (1 mm) eggs and provision of virtually all of the nutrients for embryonic development by placental means. Studies of the Brazilian species M. heathi reveal that the chorioallantoic placenta is unlike those reported in any other squamate genus and exhibits striking specializations for maternal-fetal nutrient transfer. The uterine lining is intimately apposed to the chorioallantois, with no trace of an intervening shell membrane or of epithelial erosion; thus, the placenta is epitheliochorial. The uterus exhibits multicellular glands that secrete organic material into the uterine lumen. Opposite the openings of these glands, the chorion develops areolae, invaginated pits that are lined by absorptive, columnar epithelium. A single, mesometrial placentome develops, formed by radially oriented uterine folds that project into a deep invagination of the chorion. Uterine epithelium of the placentome appears to be syncytial and secretory and overlies a rich vascular supply. The apposed chorionic epithelium is absorptive in morphology and contains giant binucleated cells that bear microvilli. Several specializations of the placental membranes of M. heathi are found among eutherian mammals, signifying evolutionary convergence that extends to histological and cytological levels. The chorioallantoic placenta of M. heathi and its relatives warrants recognition as a new morphotype for reptiles, defined here as the "Type IV" placenta. This is the first new type of chorioallantoic placenta to be defined formally for reptiles in over half a century.  相似文献   

13.
14.
Surface topography and cross-sections of the placental membranes were examined by scanning electron microscopy in two species of Thamnophis. The chorionic epithelium of the chorioallantoic placenta consists of broad, squamous cells that lack surface specializations. The apposed uterine epithelium contains ciliated cells and larger, nonciliated cells. Neither the epithelium of the chorion nor that of the uterus is eroded; thus, underlying capillaries are not exposed to the luminal surface. In both the omphaloplacenta and the omphalallantoic placenta, epithelium of the omphalopleure consists of brush-border cells bearing prominent microvilli, interspersed with cells bearing minuscule microvilli. These surface epithelial cells are joined at their apices and their lateral surfaces are extensively sculpted by intercellular channels, presenting the appearance of an epithelium specialized for absorption. Deep to the epithelium lie the yolk spheres of the isolated yolk mass, interspersed with endodermal cells. Surface topography of the uterine epithelia of the omphaloplacenta and omphalallantoic placenta is relatively unspecialized. The acellular shell membrane separates maternal and fetal tissues in each of the three placental types. Marked differences in surface features of the chorioallantois and omphalopleure probably reflect different roles of these membranes in gas exchange and transfer of water and nutrients.  相似文献   

15.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

16.
Structural and functional changes to the uterus associated with maintenance of pregnancy are controlled primarily by steroid hormones such as progesterone. We tested the hypothesis that progesterone regulates uterine structural changes during pregnancy in the viviparous skink, Pseudemoia entrecasteauxii, by treating pregnant females with the progesterone receptor antagonist mifepristone at different stages of pregnancy. Expression and distribution of progesterone receptor was determined using Western blot and immunohistochemistry. During early pregnancy, mifepristone treatment resulted in altered uterine epithelial cell surface morphology and high embryo mortality, but did not affect females at mid and late stages of pregnancy. Females treated with mifepristone in early pregnancy exhibited abnormal uterine epithelial cell morphology such as lateral blebbing and presence of wide gaps between cells indicating loss of intercellular attachment. Chorioallantoic membranes of the embryo were not affected by mifepristone treatment. Two isoforms (55 kDa and 100 kDa) of progesterone receptor were identified using immunoblots and both isoforms were localized to the nucleus of uterine epithelial cells. The 55 kDa isoform was expressed throughout pregnancy, whereas the 100 kDa isoform was expressed during mid and especially late pregnancy. In P. entrecasteauxii, mifepristone may prevent successful embryo attachment in early pregnancy through its effects on uterine epithelial cells but may have little effect on pregnancy once the maternal-embryo structural relationship is established.  相似文献   

17.
We used light microscopy to study placental structure of the lizard Sceloporus mucronatus throughout 6 months of embryonic development. Three stages of placental development could be assigned to embryos based on the arrangement of the extraembryonic membranes. A highly vascular choriovitelline placenta was present in the embryonic hemisphere and a nonvascular bilaminar omphalopleure covered most of the abembryonic hemisphere of the egg during embryonic Stages 10-28. A chorioallantoic placenta replaced the choriovitelline placenta by embryonic Stage 29 and an omphaloplacenta covered the abembryonic hemisphere at this stage. The combination of these two placental types occurred in Stage 29-36 embryos. The final stage of placentation, embryonic Stages 37-40, was characterized by an omphalallantoic placenta in the abembryonic hemisphere and a chorioallantoic placenta in the embryonic hemisphere of the egg. The choriovitelline and chorioallantoic placentae are well vascularized, with closely apposed maternal and embryonic blood vessels. These structures are the most likely sites of respiratory exchange. In contrast, the omphaloplacenta and omphalallantoic placentae contain cuboidal or columnar epithelia and these structures may function in histotrophic exchange. Placentation of S. mucronatus is similar to that of predominantly lecithotrophic species in other squamate lineages suggesting that the evolution of this placental morphology is a response to similar factors and is independent of phylogeny.  相似文献   

18.
The reptilian placenta is a composite structure formed by a functional interaction between extraembryonic membranes and the maternal uterus. Study of placental structure of squamate reptiles over the past century has established that each of the multiple independent origins of placentation, which characterize the reproductive diversity of squamates, has resulted from the evolutionary transformation of these homologous structures. Because each evolutionary transformation is an independent novel relationship between maternal and embryonic tissues, the resulting placentae are not homologous, even though the individual components may be. The evolution of reptilian placentation should reveal much about evolutionary patterns and mechanisms because similar structural-functional systems have been transformed along parallel trajectories on multiple occasions. We compared extraembryonic membrane and placental development and pattern of embryonic nutrition in thamnophiine snakes and Pseudemoia lizards in the context of recent hypotheses of phylogenetic relationships. Two primary types of placentation, chorioallantoic and yolk sac, evolved in each lineage. Smooth, highly vascular regions of chorioallantoic placentation are indistinguishable homoplasies that evolved in parallel, likely to facilitate respiratory exchange. The yolk sac placenta of each lineage is specialized for histotrophic nutrient transfer, yet composition of these structures differs because of variation in the ancestral snakes and lizards. In addition, the omphalopleure that contributes to yolk sac placentation persists to later embryonic stages compared to oviparous outgroups, but the two lineages have evolved different structures that prevent replacement of the omphalopleure by the allantois. Each lineage has also evolved unique structural specializations of the chorioallantoic placenta.  相似文献   

19.
Transmission electron microscopy was used to examine the ultrastructure of the allantoplacenta of garter snakes during the last half of gestation. This placenta occupies the dorsal hemisphere of the egg and is formed through apposition of the chorioallantois to the inner lining of the uterus. The uterine epithelium consists of flattened cells with short, irregular microvilli and others that bear cilia. The lamina propria is vascularized and its capillaries lie at the base of the uterine epithelial cells. The chorionic epithelium consists of a bilayer of squamous cells that are particularly thin superficial to the allantoic capillaries. Neither the chorionic epithelium nor the uterine epithelium undergoes erosion during development. Although a thin remnant of the shell membrane intervenes between fetal and maternal tissue at mid-gestation, it undergoes fragmentation by the end of gestation. Thus, uterine and chorionic epithelial are directly apposed in some regions of the allantoplacenta, forming continuous cellular boundaries at the placental interface. During development, capillaries proliferate in both the uterine and chorioallantoic tissues. By late gestation, the interhemal diffusion distance has thinned in some areas to less than 2 microm through attenuation of the uterine and chorionic epithelia. Morphologically, the allantoplacenta is well adapted for its function in gas exchange. However, the presence of cytoplasmic vesicles, ribosomal ER, and mitochondria in the chorionic and uterine epithelial cells are consistent with the possibility of additional forms of placental exchange.  相似文献   

20.
Topological and histological analyses of Mabuya mabouya embryos at different developmental stages showed an extraembryonic membrane sequence as follows: a bilaminar omphalopleure and progressive mesodermal expansion around the whole yolk sac at gastrula stages; mesodermal split and formation of an exocoelom in the entire embryonic chamber at neurula stages; beginning of the expansion of the allantois into the exocoelom to form a chorioallantoic membrane at pharyngula stages; complete extension of the allantois into the exocoelom between limb-bud to preparturition stages. Thus, a placental sequence could be enumerated: bilaminar yolk sac placenta; chorioplacenta; allantoplacenta. All placentas are highly specialized for nutrient absorption from early developmental stages. The bistratified extraembryonic ectoderm possesses an external layer with cuboidal cells and a microvillar surface around the whole yolk sac, which absorbs uterine secretions during development of the bilaminar yolk sac placenta and chorioplacenta. During gastrulation, with mesodermal expansion a dorsal absorptive plaque forms above the embryo and several smaller absorptive plaques develop antimesometrially. Both structures are similar histologically and are active in histotrophic transfer from gastrula stages until the end of development. The dorsal absorptive plaque will constitute the placentome and paraplacentome during allantoplacental development. At late gastrula-early neurula stages some absorptive plaques form chorionic concavities or chorionic bags that are penetrated by a long uterine fold and seem to have a specialized histotrophic and/or metabolic role. The extraembryonic mesoderm does not ingress into the yolk sac and neither an isolated yolk mass nor a yolk cleft are formed. This derived pattern of development may be related to the drastic reduction of the egg size and obligatory placentotrophy from early developmental stages. Our results show new specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号