首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Lipoprotein lipase was purified from pig myocardium by a two-step purification procedure involving (a) the formation of an enzyme-substrate complex and (b) affinity chromatography on Sepharose which contained covalently linked heparin. The purified enzyme gave in sodium dodecyl sulphate-polyacrylamide-gel electrophoresis one main band with an apparent molecular weight of 73 000. The enzyme, which was purified 70 000-fold, had a specific activity of 860 mumol of unesterified fatty acid liberated/h per mg of protein. 2. The purified enzyme hydrolysed [14C]triolein emulsions in the absence of added cofactors but its activity was increased fivefold by adding normal human serum. Of the low-density lipoprotein apoproteins only apolipoprotein CII could be substituted for serum in activating the enzyme. This lipase had maximum activity at 0.05-0.15 M-NaCl. Heparin increased the activity of the purified enzyme twofold at low concentrations, but high concentrations inhibited. The triglyceride lipase of pig myocardium thus resembles lipoprotein lipase purified from adipose tissue and from plasma, but is clearly different from pig hepatic triglyceride lipase.  相似文献   

2.
Two triacylglycerol lipase activities were characterized after partial purification from pig post-heparin plasma. These two lipase activities were eluted sequentially with a NaCl gradient from columns containing Sepharose with covalently linked heparin. The first lipase activity, which was eluted at 0.75M-NaCl, was not inhibited at 28 degrees C in the presence of 1M-NaCl and was not further activated by plasma apolipoproteins. The absence of this lipase activity from post-heparin plasma from hepatectomized pigs indicates that the liver plays a role in the synthesis of this enzyme. A second lipase activity, which was eluted at 1.2M-NaCl, was inhibited when assayed in the presence of 1.0M-NaCl and was activated 14-fold by an apolipoprotein isolated from human very-low-density lipoprotein. The characteristics are identical with those of lipoprotein lipase purified from pig adipose tissue.  相似文献   

3.
The administration of Intralipid to starved adult rats induces the appearance of lipoprotein lipase (LPL)-like activity in the liver, whereas the so-called hepatic triacylglycerol lipase is unaffected. This LPL-like activity is eluted by 1.5 M-NaCl from heparin-Sepharose columns. This partially purified fraction is inhibited by 1.0 M-NaCl (91%) and by 1.0 mg of protamine sulphate/ml (79%), whereas it is stimulated 69-fold by the presence of 8.0 micrograms of apolipoprotein C-II/ml and inhibited by anti-LPL antibodies. We conclude that Intralipid administration induces the appearance of LPL activity in livers of starved adult rats. Its possible origin is discussed.  相似文献   

4.
Human milk lipoprotein lipase (LPL) was purified by heparin-Sepharose 4B affinity chromatography. The time required for the purification was approximately 2 h. The acetone-diethyl ether powder of milk cream was extracted by a 0.1% Triton X-100 buffer solution and the extract was applied to the heparin-Sepharose 4B column. The partially purified LPL eluted by heparin had a specific activity of 5120 units/mg which represented a 2500-fold purification of the enzyme. The LPL was found to be stable in the heparin solution for at least 2 days at 4 °C. This enzyme preparation was found to be free of the bile salt-activated lipase activity, esterase activity, and cholesterol esterase activity. The LPL had no demonstrable basal activity with emulsified triolein in the absence of a serum cofactor. The enzyme was activated by serum and by apolipoprotein C-II. The application of milk LPL to studies on the in vitro degradation of human very low density lipoproteins can result in a 90–97% triglyceride hydrolysis. The LPL degraded very low density lipoprotein triglyceride and phospholipid without any effect on cholesterol esters. Of the partial glycerides potentially generated by lipolysis with milk LPL, only monoglycerides were present in measurable amounts after 60 min of lipolysis. These results show that the partially purified human milk LPL with its high specific activity and ease of purification represents a very suitable enzyme preparation for studying the kinetics and reaction mechanisms involved in the lipolytic degradation of human triglyceride-rich lipoproteins.  相似文献   

5.
A triacyglycerol lipase (EC 3.1.1.3) was purifiec about 60-fold from rat liver cytosol by delipidation with acetone and ethyl ether, hydroxyapatitie and Sephadex G-100 column chromatographies and isoelectrofocusing electrophoresis. The partially purified enzyme had a molecular weight of approximately 42 000 and an isolectric point of 7.2. The Km for trioleylglycerol was 0.33 mM and the pH optimum was around 8.0. The activity of the enzyme was not dependent on serum lipoproteins, but was stimulated about 2-fold by several proteins such as serum albumin, lipoproteins, gamma-globulin and ovalbumin. The lipase hydrolyzed trioleyglycerol to oleic acid and glycerol. NaCl had no effect on the enzymatic activity. Some physical and kinetic properties of the partially purified lipid-free lipase were different from those of crude non-delipidated lipase and also from those of a neutral triacylglycerol lipase which was recently purified partially from pig liver cytosol (Ledford, J.H. and Alaupovic, P. (1975) Biochim. Biophys. Acta 398, 132-148).  相似文献   

6.
Rabbit antiserum was prepared against purified bovine mild lipoprotein lipase. Immunoelectrophoresis of lipoprotein lipase gave a single precipitin line against the antibody which was coincident with enzyme activity. The gamma-globulin fraction inhibited heparin-releasable lipoprotein lipase activity of bovine arterial intima, heart muscle and adipose tissue. The antibody also inhibited the lipoprotein lipase activity from adipose tissue of human and pig, but not that of rat and dog. Fab fragments were prepared by papain digestion of the gamma-globulin fraction. Fab fragments inhibited the lipoprotein lipase-catalyzed hydrolysis of dimyristoylphosphatidylcholine vesicles and trioleoylglycerol emulsions to the same extent. The Fab fragments also inhibited the lipolysis of human plasma very low density lipoproteins. The change of the kinetic parameters for the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol by the Fab fragments was accompanied with a 3-fold increase in Km and a 10-fold decrease in Vmax. Preincubation of lipoprotein lipase with apolipoprotein C-II, the activator protein for lipoprotein lipase, did not prevent inhibition of enzyme activity by the Fab fragments. However, preincubation with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol or Triton X-100-emulsified trioleoylglycerol had a protective effect (remaining activity 7.0 or 25.8%, respectively, compared to 1.0 or 0.4% with no preincubation). The addition of both apolipoprotein C-II and substrate prior to the incubation with the Fab fragments was associated with an increased protective effect against inhibition of enzyme activity; remaining activity with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol was 40.6% and with Triton X-100-emulsified trioleoylglycerol, 45.4%. Human plasma very low density lipoproteins also protected against the inhibition of enzyme activity by the Fab fragments. These immunological studies suggest that the interaction of lipoprotein lipase with apolipoprotein C-II in the presence of lipids is associated with a conformational change in the structure of the enzyme such that the Fab fragments are less inhibitory. The consequence of a conformational change in lipoprotein lipase may be to facilitate the formation of an enzyme-triacylglycerol complex so as to enhance the rate of the lipoprotein lipase-catalyzed turnover of substrate to products.  相似文献   

7.
Human milk lipases. I. Serum-stimulated lipase   总被引:8,自引:0,他引:8  
Lipase activity has previously been demonstrated in human milk. This study shows that there are two separate triglyceride lipases in human milk. One is mainly in the skim milk and is stimulated by bile salts; the other is mainly in the cream and is inhibited by bile salts but stimulated by serum. The serum-stimulated lipase was purified by affinity chromatography on heparin-substituted Sepharose 4B. This gave a 9500-fold purification over whole milk. Although polyacrylamide gel electrophoresis showed that the enzyme was not purified to homogeneity, it had the highest specific activity so far reported for a human serum-stimulated lipase. The purified enzyme was free from bile salt-stimulated lipase activity and had the characteristics of other serum-stimulated or so-called lipoprotein lipases. Thus, it was almost completely inhibited by 1 M NaCl. The purified enzyme was active against tributyrylglycerol also in the absence of exogenous serum factors.  相似文献   

8.
A triglyceride lipase was extracted from defatted pig adipose tissue powder with dilute ammonia and purified about 230-fold by a combination of ammonium sulfate fractionation, heparin-Sepharose 4B, DEAE-cellulose, and Sephadex G-150 column chromatographies and isoelectrofocusing electrophoresis. The enzyme was distinguishable in physical and kinetic properties from the two previously defined lipases in adipose tissue, lipoprotein lipase, and hormone-sensitive lipase. The purified enzyme was fully active in the absence of serum lipoprotein and was not stimulated by adenosine 3':5'-monophosphate-dependent protein kinase. In marked contrast to the already defined lipases, the enzyme was strongly inhibited by serum albumin. The enzyme had a molecular weigt of about 43,000, a pI of 5.2, and pH optimum of 7.0. The enzyme hydrolyzed triolein to oleic acid and glycerol, and did not exhibit esterase activity. The apparent Km for triolein was 0.05 mM. Physiological roles of this new species of lipase remained to be explored.  相似文献   

9.
Lecithin-cholesterol acyltransferase (EC 2.3.1.43) was purified 15 000-fold from human plasma. The active material was homogeneous in different gel electrophoretic systems but separated into three major bands with apparent pI values of 4.28, 4.33 and 4.37 in isoelectrofocusing. The apparent Mr of the enzyme is 67 000 +/- 2000. An antiserum prepared against the purified enzyme specifically inhibited the activity of lecithin-cholesterol acyltransferase in whole serum. Serum from a patient with familial deficiency of lecithin-cholesterol acyltransferase was substituted in vitro with the highly purified enzyme. The serum from this patient did not contain immunochemically detectable enzyme protein. Substitution of enzyme resulted in the following major changes. 1. Cholesteryl ester content in serum increased by 36-89 mg/100 ml depending on the experimental conditions. The enzyme-mediated formation of cholesteryl ester led to an increase of cholesteryl ester content in high-density and very-low-density lipoproteins and in low-density lipoproteins containing apoprotein-B. No increase occurred in fractions containing very large flattened structures and the abnormal lipoprotein-X and in lipoprotein-E. Incubation of isolated fractions with lecithin-cholesterol acyltransferase led to significant cholesterol esterification only in high-density lipoproteins. 2. The characteristic disc-shaped rouleaux-forming high-density lipoproteins of enzyme-deficient serum disappeared. Instead a single homogeneous population of high-density lipoproteins formed. The particles generated were spherical and had the electrophoretic properties, density (1.080 g/ml), diameter (12.5 nm) and apoprotein composition of normal high-density lipoproteins-2. 3. The concentration of spherical particles containing apolipoprotein E (density 1.040-1.080 g/ml) and the lamellar lipoprotein-X-like structures in the low-density lipoprotein fraction were not affected by the enzyme substitution. 4. A single homogeneous population of spherical lipoprotein-B particles of 26.5-nm diameter occurred at density 1.029 g/ml. The data suggest that the discoidal high-density lipoproteins are the major site of cholesteryl ester formation that apolipoprotein-E is not involved in an undirectional transport of newly formed cholesteryl ester from high-density lipoproteins to other lipoproteins and that lipoprotein-X and lipoprotein-E are not preferential substrates for the acyltransferase.  相似文献   

10.
1. Lipoprotein lipase and salt-resistant lipase activities increased in the ovaries but decreased in the adipose tissue of female trout in the months leading up to spawning. 2. The activity of the plasma cholesterol esterifying enzyme increased significantly immediately prior to spawning. 3. Plasma lipoprotein concentrations decreased during the approach to spawning. 4. These studies suggest that the developing ovaries in the trout receive their nutrients by lipolysis of plasma lipoproteins as well as by vitellogenin uptake; differentiation of the roles of the lipid stores in different tissues is proposed.  相似文献   

11.
Lin YH  Huang AH 《Plant physiology》1984,76(3):719-722
The lipase from the scutella of corn (Zea mays) MO-17 seedlings was purified 272-fold to apparent homogeneity as evidenced by sodium dodecyl sulfate polyacrylamide gel electrophoresis and double immunodiffusion. The procedure involved isolation of the lipid bodies, extraction with diethyl ether, DE-52 ion exchange chromatography, and sucrose density gradient centrifugation. The enzyme had an approximate molecular weight of 270,000 daltons after sucrose density gradient centrifugation, and 65,000 daltons after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The lipase contained no cysteine and its molecular weight in sodium dodecyl sulfate was not reduced by β-mercaptoethanol. The amino acid composition as well as a biphasic partition using Triton X-114 revealed the enzyme to be a hydrophobic protein. Rabbit γ-globulin containing antibodies raised against the purified lipase formed one precipitin line with the lipase in a double diffusion test, and precipitated all the lipase activity from a solution.  相似文献   

12.
Lysosomal acid lipase was purified to near homogeneity in a yield of 25-30% from secretions of human fibroblasts grown on microcarriers in spinner culture. Ammonium chloride was added to the serum-free medium to stimulate production of extracellular enzyme and minimize modifications, including proteolytic processing and destruction of the mannose 6-phosphate recognition marker, that have been associated with packaging and maturation of acid hydrolases in lysosomes. Chromatography of secretions by decyl-agarose, hydroxylapatite, phenylboronate-agarose, and gel filtration resulted in greater than 1500-fold purification of the lipase, representing a 10,000-fold increase above the specific activity of intracellular enzyme. The apparent molecular weight of approximately 49,000, estimated for the lipase by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, was similar to that determined for the native enzyme by gel filtration (Mr approximately 47,000). By contrast, a smaller molecular weight (Mr approximately 41,000) was estimated for the intracellular enzyme. The purified enzyme was susceptible to hydrolysis by endo-beta-N-acetylglucosaminidase H, which resulted in at least two new forms, reduced in apparent molecular weight by approximately 4,000-6,000. Treatment with the endoglycosidase did not alter the catalytic activity or heat stability of the acid lipase. However, the treated enzyme was no longer internalized by fibroblasts via the mannose 6-phosphate receptor and thereby had lost the capacity to correct cholesteryl ester accumulation in cultured lipase-deficient cells. Acid fatty acyl hydrolase activity for cholesteryl oleate, triolein, and methylumbelliferyl oleate co-purified. All three esters were hydrolyzed optimally at pH 4.0, but the pH profile was altered by addition of salts or albumin to the phospholipid-bile salt substrate mixtures. In a series of saturated fatty acyl esters of 4-methylumbelliferone, a derivative with an intermediate chain length (9 carbons) was the best substrate and was hydrolyzed at a rate comparable to that of the oleate ester at pH 4. The optimal pH for hydrolysis of the intermediate and shorter chain length esters was higher by about 2 pH units than that for the longer chain esters (pH approximately 4). The activity of the purified lipase was stimulated by several different proteins. The relationship of this effect to the possible requirement for a natural activator substance has not been determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In rainbow trout (Salmo gairdnerii) lipoprotein profiles change during the annual sexual cycle. Among other factors, lipoprotein lipase (LPL) activity might play a role. This enzyme is activated by trout serum suggesting the existence of a cofactor corresponding to apoprotein CII in this species. In the present study, we determined more accurately some characteristics of the enzyme activity inhibited by 0.3 M NaCl. Trout serum and high density lipoproteins (HDL) activated both rat and trout adipose tissue LPLs. A fraction of apo HDL obtained by gel filtration also activated the enzyme. The mean Mr was 10,000. Isoelectric focusing of the same fraction gave several bands of proteins with apparent pI in the range of 4.2-4.9. These results show that in trout, LPL is activated by a cofactor similar to that in mammals, the apo CII. In addition, a fraction mainly containing apo AI (+ traces of apo C) activated trout LPL and reinforced the activation by apo CII. These findings suggest that trout apo AI may promote the activating effect of apo CII on trout LPL.  相似文献   

14.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

15.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid synthesized by a variety of cell types upon appropriate stimulation. PAF is a potent hypotensive factor and it activates platelets and inflammatory cells at concentrations as low as 10(-10) M. Removal of the acetyl moiety at the sn-2 position abolishes the biological activity and this reaction is catalyzed by a specific acetylhydrolase present in plasma and animal tissues. Ultracentrifugation in density gradients showed that 30% of the activity is associated with high density lipoproteins and 70% with low density lipoproteins. We have purified the plasma low density lipoprotein-associated activity to near homogeneity using a rapid assay based on the separation of [3H]acetate from 1-O-alkyl-2-[3H]acetyl-sn-glycerol-3-phosphocholine on disposable reversed-phase columns. The enzyme was purified by 25,000-fold and approximately 10% of the starting activity was recovered. Plasma PAF-acetylhydrolase has an apparent molecular weight of 43,000, does not require calcium, has preference for micellar versus monomeric substrate, and exhibits surface dilution kinetics. The purified protein has an apparent Km of 13.7 microM and a Vmax of 568 mumol/h/mg with micellar PAF. It can act both on 1-O-alkyl and 1-acyl substrates and on ethanolamine analogs of PAF. However, the enzyme has a marked preference for the sn-2 acetyl residue and therefore can be considered as a specific PAF-acetylhydrolase.  相似文献   

16.
Hepatic lipase deficiency produces significant distortion in the plasma lipoprotein profile. Particles with reduced electrophoretic mobility appear in very low density lipoprotein (VLDL). Intermediate density lipoprotein (IDL) increases markedly in the circulation and plasma low density lipoprotein (LDL) levels fall. At the same time there is a mass redistribution within the high density lipoprotein (HDL) spectrum leading to dominance in the less dense HDL2 subfraction. The present study examines apolipoprotein B turnover in a patient with hepatic lipase deficiency. The metabolism of large and small very low density lipoproteins was determined in four control subjects and compared to the pattern seen in the patient. Absence of the enzyme did not affect the rate at which large very low density lipoproteins were converted to smaller particles within this density interval (i.e., of VLDL). However, subsequent transfer of small very low density lipoproteins to intermediate density particles was retarded by 50%, explaining the abnormal accumulation of VLDL in the patient's plasma. Despite this, intermediate density particles accumulated to a level 2.4-times normal because their subsequent conversion to low density lipoprotein has been almost totally inhibited. Consequently, the plasma concentration of low density lipoprotein was only 10% of normal. On the basis of these observations, hepatic lipase appears to be essential for the conversion of small very low density and intermediate density particles to low density lipoproteins. The pathways of direct plasma catabolism of these species were not affected by the enzyme defect. In vitro studies were performed by adding purified hepatic lipase to the patient's plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A lipoprotein lipase in the bovine arterial wall has been identified and partially characterized. The enzyme has a Km apparent of 1 mM for triolein in a phosphatidylcholine stabilized emulsion. The lipase was stimulated 20- to 30-fold by the addition of heated rat plasma to the assay medium. The activity exhibited a pH optimum at 8.6. Protamine sulfate (1.0 mg/ml) inhibited the activity by 50%, whereas 1.4 M sodium chloride inhibited by 85%. Sodium fluoride, an inhibitor of the hormone-sensitive lipase, had no effect on the activity. Additions of low concentrations of heparin or Ca-2+ to the enzyme caused a slight stimulation of the lipolytic activity. A crude sectioning of the aorta revealed specific activity of lipoprotein lipase to be highest at the endothelial side of the artery.  相似文献   

18.
The lipoproteins in GR mice bearing the transplanted GRSL ascites tumor were characterized by density gradient ultracentrifugation and SDS-polyacrylamide gel electrophoresis. In control mice the major proportion of the lipoproteins was found in the HDL density range, but on days 4 and 5 following tumor transplantation a gradual shift into the LDL density range was observed. At the same time the apolipoprotein E content increased at the expense of apolipoprotein A-I. VLDL became moderately elevated. On days 6 and 7 all lipoproteins except VLDL reached extremely low values. The C-apolipoproteins showed a remarkable shift in their relative proportions. Plasma lecithin:cholesterol acyltransferase activity showed no significant alteration in the course of tumor growth, but the triacylglycerol lipases in postheparin plasma were strongly decreased. Lipoprotein lipase had already started to decline on day 2 following tumor transplantation. However, when assayed in the presence of heat-inactivated control plasma, a decrease was not observed before day 5. This is suggestive of a depletion of a plasma cofactor preceding the final disappearance of the enzyme itself, and is compatible with the changing apolipoprotein C pattern. Hepatic lipase showed a 50% reduction between days 3 and 4. The lipoprotein alterations in tumor-bearing mice are explained as a direct consequence of the decreased lipase activities.  相似文献   

19.
Polynucleotide kinase (EC 2.7.1.78) has been purified from rat testes, and an approximately 2000-fold purification was obtained. The purified enzyme had an Mr of 38000 +/- 3800. The enzyme phosphorylated micrococcal nuclease-treated calf thymus DNA and (dT)10 while 5'-HO-tRNA was a very poor substrate. A certain degree of specificity towards purine-containing 5'-HO-nucleotides was observed. The polynucleotide kinase had an absolute requirement for a divalent cation. Both Mg2+ and Mn2+ could be used, but 10 mM MgCl2 gave optimal activity. The monovalent cations Na+, K+ and NH4+ all stimulated enzyme activity, and the optimal concentration was 0.1 M. The enzyme was inhibited by inorganic phosphate, pyrophosphate and sulphate. A 50% inhibition was obtained with 20, 0.3 and 2 mM, respectively. At 2 mM MgCl2, 1 mM spermine enhanced the enzyme activity 3-times. The apparent KATP was estimated to be 36 microM and KHO-DNA was found to be 2 microM.  相似文献   

20.
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of TG-rich lipoproteins. To elucidate the physiological roles of LPL in lipid and lipoprotein metabolism, we generated transgenic rabbits expressing human LPL. In postheparinized plasma of transgenic rabbits, the human LPL protein levels were about 650 ng/ml, and LPL enzymatic activity was found at levels up to 4-fold greater than that in nontransgenic littermates. Increased LPL activity in transgenic rabbits was associated with as much as an 80% decrease in plasma triglycerides and a 59% decrease in high density lipoprotein-cholesterol. Analysis of the lipoprotein density fractions revealed that increased expression of the LPL transgene resulted in a remarkable reduction in the level of very low density lipoproteins as well as in the level of intermediate density lipoproteins. In addition, LDL cholesterol levels in transgenic rabbits were significantly increased. When transgenic rabbits were fed a cholesterol-rich diet, the development of hypercholesterolemia and aortic atherosclerosis was dramatically suppressed in transgenic rabbits. These results demonstrate that systemically increased LPL activity functions in the metabolism of all classes of lipoproteins, thereby playing a crucial role in plasma triglyceride hydrolysis and lipoprotein conversion, and that overexpression of LPL protects against diet-induced hypercholesterolemia and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号