首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

2.
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de‐queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen‐laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen‐laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non‐natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.  相似文献   

3.
Specialized castes are considered a key reason for the evolutionary and ecological success of the social insect lifestyle. The most essential caste distinction is between the fertile queen and the sterile workers. Honeybee (Apis mellifera) workers and queens are not genetically distinct, rather these different phenotypes are the result of epigenetically regulated divergent developmental pathways. This is an important phenomenon in understanding the evolution of social insect societies. Here, we studied the genomic regulation of the worker and queen developmental pathways, and the robustness of the pathways by transplanting eggs or young larvae to queen cells. Queens could be successfully reared from worker larvae transplanted up to 3 days age, but queens reared from older worker larvae had decreased queen body size and weight compared with queens from transplanted eggs. Gene expression analysis showed that queens raised from worker larvae differed from queens raised from eggs in the expression of genes involved in the immune system, caste differentiation, body development and longevity. DNA methylation levels were also higher in 3‐day‐old queen larvae raised from worker larvae compared with that raised from transplanted eggs identifying a possible mechanism stabilizing the two developmental paths. We propose that environmental (nutrition and space) changes induced by the commercial rearing practice result in a suboptimal queen phenotype via epigenetic processes, which may potentially contribute to the evolution of queen–worker dimorphism. This also has potentially contributed to the global increase in honeybee colony failure rates.  相似文献   

4.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

5.
We compare the primary sex ratio (proportion of haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.  相似文献   

6.
Summary The behaviour ofCataglyphis cursor workers towards queens at 15 days, one month or two months after worker emergence was tested. Workers reared entirely with their own maternal queen were tested with this queen or with an unfamiliar alien queen. Workers transferred within 48 h of emerging to a new definitive nest with an alien queen were tested with this queen or with the original maternal queen. The degree of attraction to each of these queens and the workers' behavioural repertoire were measured and analysed. The results showed the following: 1) The attractiveness of queens and the workers' queen recognition behaviour were linked. 2) Although unfamiliar alien queens hardly attract workers, familiar alien queens were as attractive as maternal queens, and induced the same strongly marked and unique worker response, indicating that workers learn queen attractant cues in the days immediately after emergence. 3) Agonistic reactions were observed, but workers continued to be attracted to their maternal queen even after developing an attraction response to an alien queen with which they had been reared. These results agree with the proposal that queens produce two kinds of pheromones, those that attract workers and those that mediate recognition of queens by workers. These results show the ability of workers to discriminate between queens. Workers are attracted to any queen, but recognize as nestmates only maternal or alien queens with which they have been maintained. 4) The differential in worker attraction and recognition from 15 days to 2 months and its modifications by post-imaginal experience illustrate worker behavioural ontogeny, which is a basis of social discrimination.  相似文献   

7.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

8.
Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing ‘superorganisms’––incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.  相似文献   

9.
Mated queens of the antLinepithema humile (Iridomyrmex humilis Mayr) introduced into dequeened colony fragments rearing sexual brood elicited worker aggression resulting in queen larvae being bitten and eliminated. By contrast, male larvae were spared. Regarding queen brood, killing mainly concerned small and medium sized larvae. A large proportion of the large larvae escaped extermination, and prepupae and pupae were spared. These data suggest that workers were able to discriminate sex, caste and age of the brood. That a queen pheromone may be involved was shown by experiments using whole or cut corpses that were either rinsed or not rinsed in pentane. The pheromone eliciting worker aggressive behaviour was shown to act over a short distance, suggesting that it is somewhat volatile. Similarities and differences between this new queen pheromone and other known queen pheromones acting on queen production or worker attraction are discussed as well as the origin of the signals underlying the recognition of the larval classes.  相似文献   

10.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

11.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

12.
Caste fate conflict is expected in Melipona bees because queens and workers are the same size and are reared in identical sealed cells. Extrinsic and intrinsic colonial factors, however, seem to have limiting effects on queen production. The consequences of colonial conditions on both queen and worker production, particularly the effects of food storage in the colonies, are still poorly understood. Here, we investigated whether caste production in seven natural colonies of Melipona compressipes fasciculata was affected by food resources, seasonal factors, or internal factors. The results showed that, at the populational level, about 5% of the females developed into gynes; in the strongest colony, 12.7% of the females developed into gynes. Male production was verified only in stronger colonies. We suggest that caste ratio is primarily affected by intra-colonial conditions rather than by food resources. Received 1 November 2005; revised 30 January 2006; accepted 17 February 2006.  相似文献   

13.
The struggle among social classes or castes is well known in humans. Here, we show that caste inequality similarly affects societies of ants, bees and wasps, where castes are morphologically distinct and workers have greatly reduced reproductive potential compared with queens. In social insects, an individual normally has no control over its own fate, whether queen or worker, as this is socially determined during rearing. Here, for the first time, we quantify a strategy for overcoming social control. In the stingless bee Schwarziana quadripunctata, some individuals reared in worker cells avoid a worker fate by developing into fully functional dwarf queens.  相似文献   

14.
The occurrence of multiple reproductives within an ant colony changes the balance between indirect fitness benefits and reproductive competition. We test whether the number of matings by an ant queen (polyandry) correlates negatively with the number of reproductive queens in the colony (polygyny), whether the patrilines and matrilines differ in their contribution to the sexual and worker progeny and whether there is an overall reproductive skew. For these aims, we genotyped both worker and sexual offspring from colonies of the ant Formica sanguinea in three populations. Most colonies were monogynous, but eight (11%) were polygynous with closely related queens. Most queens in the monogynous colonies (86%) had mated with multiple males. The effective paternity was lower than the actual number of mates, and the paternity skew was significant. Furthermore, in some monogynous colonies, the patrilines were differently represented in the worker pupae and sexual pupae produced at the same time. Likewise, the matrilines in polygynous colonies were differently present in worker pupae and male offspring. The effective number of matings by a queen was significantly lower in polygynous colonies (mean me = 1.68) than in monogynous colonies (means 2.06–2.61). The results give support to the hypotheses that polyandry and polygyny are alternative breeding strategies and that reproductive competition can lead to different representation of patrilines and matrilines among the sexual and worker broods.  相似文献   

15.
Abstract. 1. In eusocial insects, colony fission is a mode of dispersal by which a young queen leaves her nest with some workers to found a new colony. In these species, adult females (workers and the queen) should allocate most resources to increasing their colony size, which constrains the possibility of fission. In contrast, developing diploid larvae should have a preference for becoming a queen and having their own offspring, rather than becoming workers and rearing the offspring of other females. 2. In the ant Aphaenogaster senilis, queens are produced in very small numbers, suggesting that adult females control larval development. We used a 6‐year series of data on more than 300 nests to determine the annual cycle of worker and queen production. Although both overlapped, the latter mostly occurred in the second half of the summer, after a major peak of worker emergence. Young queens were also often produced in nests whose reproductive queen had died, thus allowing her replacement. Overall, we estimate that only 0.07% of diploid larvae actually develop into gynes. 3. Laboratory experiments indicated that brood is bipotent until the second larval instar. Diploid larval development into queen was favoured by the removal of the mother queen, but was not affected by rearing temperature. 4. Our data suggest that most diploid broods are forced by the adults to develop into workers rather than into gynes. However, when the queen is not present due to death or after a fission event, a few larvae are allowed to develop into gynes. One way for workers to limit the development of larvae might be by controlling the amount of food they receive.  相似文献   

16.
Honeybee, Apis mellifera, colonies replace their queens by constructing many queen cells and then eliminating supernumerary queens until only one remains. The ages of the queens and the variation in their reproductive potential are important factors in the outcome of such events. Selection would favour colonies that requeen as quickly as possible to minimize the brood hiatus, therefore selecting for queens reared from older larvae. Conversely, reproductive potential (queen 'quality') is maximized by rearing queens from younger larvae. This potential trade-off was tested during two phases of queen replacement, namely queen rearing and polygyny reduction. Our results suggest that queen age is a significant element during both queen rearing and polygyny reduction, whereas queen quality, at least to the magnitude tested in this experiment, has little impact on the outcome of either process. The rate of queen replacement therefore appears to be an important factor in the honeybee life cycle, and further mechanisms of potential importance during this life history transition are discussed. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

17.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

18.
Summary. Potential conflict between the queen and workers over the production of males is expected in stingless bees as a result of the higher relatedness of workers with their sons than with their brothers. This conflict was studied in Melipona subnitida by observing how the queen and the workers share in male production. The oviposition of individual cells was observed in two colonies with individually marked workers for a period of 51 and 40 days respectively. The gender that developed from these cells was then determined. The results revealed that most male production was concentrated in a 2–3-week period, during which laying workers were present. During these weeks, the queens produced twice as many males as all laying workers together. Outside this distinct period, the queens produced an occasional male. A reproductive worker either oviposited before the queen did, in which case she immediately proceeded to close the cell and thus prevented the queen from oviposition, or oviposited and sealed the cell after the queen had laid an egg. When cell construction and oviposition occured on several combs simultaneously, the workers preferentially laid male eggs on the newest combs. We discuss the proximate mechanism and ultimate cause of the way in which queen-worker male production occurred. In conclusion, we argue that overt behavioural conflict, occasionally displayed by reproductive workers of this species, can be of great cost to the colony.Received 27 February 2004; revised 6 September 2004; accepted 1 October 2004.  相似文献   

19.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

20.
ABSTRACT. Providing queenless colonies with five queen cells containing larvae or pupae diminished the number of queen cells and queen cell cups subsequently produced, but not as effectively as the provision of a mated laying queen. Immature queens were more effective than the mature queens in stimulating pollen collection, but were less effective in stimulating nectar collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号