首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixture of conjugated linoleic acids (CLAs) was prepared by alkali conjugation of high purity linoleic acid. The preparation contained 45.1 wt% cis-9, trans-11 (c9,t11)-CLA, 46.8 wt% trans-10, cis-12 (t10,c12)-CLA, and 5.3 wt% other CLAs. A process comprising Candida rugosa lipase-catalyzed selective esterification with lauryl alcohol, molecular distillation, and urea adduct fractionation under strict conditions in ethanol was very effective for purification of c9,t11- and t10,c12-CLAs. In particular, the urea adduct fractionation efficiently eliminated CLAs except c9,t11- and t10,c12-isomers. Purification of c9,t11- and t10,c12-CLAs from 1.0 kg of the CLA mixture increased the c9,t11-CLA purity to 93.1% with 34% recovery of the initial content, and increased the t10,c12-CLA purity to 95.3% with 31% recovery.  相似文献   

2.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9,cis-11-18:2, cis-9,cis-11-18:2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby (1)H was incorporated in preference to (2)H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18:2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.  相似文献   

3.
Gene expression and activity of matrix-metalloproteinases (MMP)-2 and -9 in macrophages are reduced through peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent inhibition of NF-kappaB. Since conjugated linoleic acids (CLAs) are PPARgamma ligands and known to inhibit NF-kappaB via PPARgamma, we studied whether CLA isomers are capable of reducing gene expression and gelatinolytic activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which has not yet been investigated. Incubation of PMA-differentiated THP-1 cells with either c9t11-CLA, t10c12-CLA or linoleic acid (LA), as a reference fatty acid, resulted in a significant incorporation of the respective fatty acids into total cell lipids relative to control cells (P<.05). Treatment of PMA-differentiated THP-1 cells with 10 and 20 mumol/L troglitazone but not with 10 or 100 mumol/L c9t11-CLA, t10c12-CLA or LA reduced relative mRNA concentrations and activity of MMP-2 and MMP-9 compared to control cells (P<.05). DNA-binding activity of NF-kappaB and PPARgamma and mRNA expression of the NF-kappaB target gene cPLA(2) were not influenced by treatment with CLA. In contrast, treatment of PMA-differentiated THP-1 cells with troglitazone significantly increased transactivation of PPARgamma and decreased DNA-binding activity of NF-kappaB and relative mRNA concentration of cPLA(2) relative to control cells (P<.05). In conclusion, the present study revealed that CLA isomers, in contrast to troglitazone, did not reduce gene expression and activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which is probably explained by the observation that CLA isomers neither activated PPARgamma nor reduced DNA-binding activity of NF-kappaB. This suggests that CLA isomers are ineffective in MMP-associated extracellular matrix degradation which is thought to contribute to the progression and rupture of advanced atherosclerotic plaques.  相似文献   

4.
Conjugated linoleic acids (CLAs) are conjugated dienoic isomers of linoleic acid. Some isomers have been shown to reduce fat mass in animal and cell culture models. However, controversial results were obtained in studies of supplementation of CLAs in human subjects. In order to get more insights into the direct effects of CLAs on human fat cells, we have studied the influence of cis-9, trans-11 CLA and trans-10, cis-12 CLA on the biology of human SGBS preadipocytes and adipocytes. Both CLA isomers equally inhibited the proliferation of preadipocytes in a dose-dependent manner. Continuous treatment with 1-10 microM trans-10, cis-12 CLA, and to a weaker extent cis-9, trans-11 CLA, inhibited accumulation of lipids during adipogenic differentiation. Treatment with higher doses of CLA induced apoptosis in preadipocytes, in differentiating cells, and adipocytes. The trans-10, cis-12 isomer had a higher apoptotic potency in adipocytes than cis-9, trans-11 CLA. Taken together, the treatment of human preadipocytes and adipocytes with physiological relevant concentrations of CLAs resulted in an impairment of proliferation and differentiation and induction of apoptosis. The trans-10, cis-12 isomer was more potent than the cis-9, trans-11 isomer. Further clinical studies are needed to evaluate the effects of CLAs on human fat mass and metabolism in vivo.  相似文献   

5.
Conjugated linoleic acids (CLA) are dietary fatty acids. Whereas cis-9,trans-11-(c9,t11)-CLA can be found in meat and dairy products, trans-9,trans-11-(t9,t11)-CLA is a constituent of vegetable oils. Previous studies showed that these two isomers activate different nuclear receptors and, thus, expression of genes related to lipid metabolism. Here we show that these CLA isomers are differentially elongated and desaturated in primary monocyte-derived macrophages isolated from healthy volunteers by using gas chromatography-mass spectrometry (GC-MS). We further demonstrate that c9,t11-CLA incorporates in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species and activates de novo glycerophospholipid synthesis by quantitative electrospray ionization-tandem mass spectrometry (ESI-MS/MS). c9,t11-CLA leads to strong shifts of the species profiles to PC 18:2/18:2 and PE 18:2/18:2, which are due to de novo synthesis and fatty acid remodeling. In contrast, t9,t11-CLA is preferentially bound to neutral lipids, including triglycerides and cholesterol esters. Taken together our results show that c9,t11-CLA and t9,t11-CLA have differential effects on PC and PE metabolism. Moreover, these data demonstrate that the structure of fatty acids not only determines their incorporation into lipid classes but also modulates the kinetics of lipid metabolism, particularly PC synthesis.  相似文献   

6.
植物乳杆菌ZS2058在磷酸盐缓冲液体系中生物转化共轭亚油酸   总被引:12,自引:0,他引:12  
植物乳杆菌ZS2058是从泡菜中筛选到一株具有转化共轭亚油酸能力的乳酸菌。该菌株在MRS培养基中经0.5mg/mL的亚油酸诱导培养后,所获得的菌体细胞具有较强的转化能力。文中就植物乳杆菌ZS2058水洗细胞在磷酸盐缓冲液体系中生物转化共轭亚油酸进行了深入研究。在非厌氧条件下,植物乳杆菌ZS2058在亚油酸浓度为1mg/mL,湿细胞质量浓度约为150mg/mL,120r/min、37℃的条件下反应24h后,能将亚油酸转化为共轭亚油酸和羟基脂肪酸,其中c9,t11-CLA占所产生的CLA总量的96.4%,产量可高达312.4μg/mL,说明该菌株有很强的专一性。随着反应进一步进行,反应至36h时,c9,t11-CLA含量逐渐减少,伴随着大量羟基脂肪酸的产生;并且,以CLA(c9,t11-CLA和t10,c12-CLA的混合样品)为底物进行反应时,c9,t11-CLA被转化为羟基脂肪酸。由此可知,c9,t11-CLA可能是该菌株生物转化LA过程中的一个中间产物。  相似文献   

7.
Conjugated linoleic acid (CLA) has been reported to reduce blood pressure in obese insulin-resistant rats, but its mechanism of action has not been identified. The objective of this study was to determine whether CLA isomers can reduce obesity-related hypertension in the fa/fa Zucker rat in relation to adiponectin production and endothelial nitric oxide synthase (eNOS) activation. Obese fa/fa Zucker rats were randomly assigned to one of four groups: (1) cis-9,trans-11-CLA, (2) trans-10,cis-12 (t10,c12)-CLA, (3) control or (4) captopril. After 8 weeks, systolic blood pressure increased 30% in control obese rats. This increase was attenuated 11%-13% in the t10,c12-CLA isomer and captopril groups, respectively. The t10,c12-CLA isomer concurrently elevated adiponectin levels in both plasma and adipose tissue and increased phosphorylated eNOS in adipose tissue as well as the aorta. Although a direct effect of CLA was not observed in cultured endothelial cells, direct adiponectin treatment increased phosphorylation of eNOS. Endothelial nitric oxide synthase phosphorylation was also increased in adipose of fa/fa Zucker rats infused with adiponectin in parallel with improvements in blood pressure. Our results suggest that the t10,c12-CLA isomer attenuates development of obesity-related hypertension, at least in part, by stimulating adiponectin production, which subsequently activates vascular eNOS.  相似文献   

8.
Conjugated linoleic acid (CLA), a dietary fat, has been considered beneficial in metabolic syndrome. Despite several findings indicating that CLA improves glucose clearance, little information is available regarding the cellular dynamics of CLA on skeletal muscle. We sought to investigate the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in cis-9, trans-11(c9,t11) and trans-10, cis-12 (t10,c12) CLA isomer-mediated glucose transport by L6 myotubes. t10,c12-CLA stimulated both intracellular Ca(2+) release (Ca(i)(2+)) and CaMKII phosphorylation, whereas c9,t11-CLA showed only modest effects on both. Sequestering Ca(i)(2+) with BAPTA/AM abrogated the effect of both CLA isomers on Akt substrate-160 kDa (AS160) phosphorylation and glucose uptake by myotubes. Exposing myotubes to KN-93 or autocamtide 2-related inhibitory peptide to block CaMKII activity prevented both CLA isomers from inducing AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished CLA isomer-mediated glucose uptake. These results indicate that CLA isomers require Ca(i)(2+)-CaMKII to mediate glucose uptake. Evidence that CaMKII blockers inhibit t10,c12-CLA-mediated AMP-activated protein kinase (AMPK) activation indicated that CaMKII acts upstream of AMPK in response to t10,c12-CLA. Lastly, CLA isomers stimulated the formation of reactive oxygen species but had no effect on stress-activated protein kinase/c-jun NH(2)-terminal kinase. These data establish that t10,c12-CLA acts via Ca(i)(2+)-CaMKII-AMPK-AS160 to stimulate skeletal muscle glucose transport, whereas the mechanism of c9,t11-CLA remains unclear. Given that impairments in muscle glucose utilisation are apparent in metabolic syndrome, delineating the molecular mechanisms by which CLA isomers mediate muscle glucose uptake may identify new approaches to manage this condition.  相似文献   

9.
Conjugated linoleic acids (CLAs) are the positional and geometric isomers of linoleic acid. In the present study the effects of cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA ) on intracellular and heparin-releasable (HR-) lipoprotein lipase (LPL) activity in 3T3-L1 adipocytes were investigated. Cells were exposed to the two CLA isomers and linoleic acid, which were bound to bovine serum albumin (BSA). In the adipocytes insulin up-regulated and tumor necrosis factor alpha (TNFalpha) down-regulated HR-LPL activity, which corresponds with the findings in vivo. The experimental fatty acids at low concentrations (<30 μmol/L) moderately increased intracellular and HR-LPL activity. At a concentration of 100 μmol/L, c9,t11 CLA and t10,c12 CLA suppressed HR-LPL activity to 20 and 24% below the BSA control level, respectively, while linoleic acid had no effect unless its concentration was as high as 1000 μmol/L. Insulin abolished the inhibitory effect of c9,t11 CLA, but not of t10,c12 CLA. In the presence of insulin, t10,c12 CLA inhibited HR-LPL activity by 41% compared to BSA control. In contrast to TNFalpha, which suppressed both intracellular LPL and HR-LPL activity, CLAs suppressed HR-LPL activity without decreasing intracellular LPL activity. Additionally, t10,c12 CLA (100 μmol/L) partially prevented TNFalpha-induced decrease of intracellular LPL activity. These results indicate that CLAs differ from linoleic acid in regulating HR-LPL activity, and t10,c12 CLA appeared to be more effective than c9,t11 CLA.  相似文献   

10.
The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9,trans-11-CLA (c9,t11-CLA) and trans-10,cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker (fa/fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced (P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides (r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.  相似文献   

11.
12.
The chemiluminescent response of conjugated linoleic acid isomers (CLAs), linoleic acid (LA) and methyl linoleate (LAME) against the prooxidant t-butyl hydroperoxide (tBHP) was analyzed. The c9, t11-CLA and t10, c12-CLA isomers showed significant photoemission at the highest concentration used, while photoemission was not detected at any concentration of LA and LAME analyzed. These results show that CLAs are more susceptible to peroxidation than LA and LAME. Likewise, the effect of CLA, LA and LAME on lipid peroxidation of triglycerides rich in C20:5 omega3 and C22:6 omega3 (Tg omega3-PUFAs) was investigated. For that, chemiluminescence produced by triglycerides in the presence of tBHP, previously incubated with different concentrations of CLAs, LA and LAME (from 1 to 200 mM) was registered for 60 min. Triglycerides in the presence of t-BHP produced a peak of light emission (3151+/-134 RLUs) 5 min after addition. CLAs produced significant inhibition on photoemission, t10, c12-CLA being more effective than the c9, t11-CLA isomer. LA and LAME did not have an effect on lipid peroxidation of Tg omega3-PUFAs. CLA isomers, LA and LAME were also investigated for free radical scavenging properties against the stable radical (DPPH()). Both CLA isomers reacted and quenched DPPH() at all tested levels (from 5 to 25 mM), while LA and LAME did not show radical quenching activity even at the highest concentration tested. These data indicate that CLAs would provide protection against free radicals, but LA and LAME cannot.  相似文献   

13.
Conjugated linoleic acids (CLAs) are bioactive lipid compounds showing anti-atherogenic actions in cell culture experiments and animal models of atherosclerosis without exact knowledge about the underlying mechanisms. CLAs were recently reported to be further metabolized to bioactive conjugated metabolites indicating that these metabolites are possibly involved in mediating the anti-atherogenic actions of CLA. Regarding the lack of information with respect to the formation of CLA metabolites in the vascular endothelium, which is strongly involved in the process of atherosclerosis, the present study aimed to explore the potential formation of CLA metabolites in vascular endothelial cells. The results from the present study show for the first time that the CLA isomers cis-9, trans-11 CLA and trans-10, cis-12 CLA are metabolized within endothelial cells to beta-oxidation products such as CD16:2c7t9 and CD16:2t8c10 and elongation products such as CD20:2c11t13, CD20:2t12c14 as well as CD22:2c13t15 and CD22:2t14c16. Different CD16:2/CLA ratios observed between cells treated with different CLA isomers indicate that the metabolism of CLAs depends on the configuration of the conjugated double bonds. In conclusion, regarding the biological activity reported for CD20:2t12c14 and other metabolites of CLA, the present results indicate that metabolites of CLA are possibly also involved in mediating the anti-atherogenic actions of CLA.  相似文献   

14.
This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing approximately 600 mg of either c9,t11 CLA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dose-dependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CLA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.  相似文献   

15.
Conjugated linoleic acid (CLA) constitutes a group of isomers derived from linoleic acid. Diverse studies have suggested that these unsaturated fatty acids have beneficial effects on human health. However, it has also been reported that their consumption can generate alterations in hepatic tissue. Thus, in the present study, we evaluated the effect of two of the major isomers of CLA, cis-9, trans-11-CLA and trans-10, cis-12-CLA, in the regulation of insulin signaling in a hepatic cell model, clone 9 (C9). We found that the two isomers decrease insulin-stimulated phosphorylation of the main proteins involved in insulin signaling, such as Akt at Ser473 and Thr308, the insulin receptor at Tyr1158, IRS-1 at Tyr632, and GSK-3 at Ser9/21. Protein expression, however, was unaffected. Interestingly, both isomers of CLA promoted phosphorylation and activation of PKCε. Inhibition of PKCε activity by a dominant-negative form or knockdown of endogenous PKCε prevented the adverse effects of CLA isomers on insulin-induced Akt phosphorylation. Additionally, we also found that both isomers of CLA increase phosphorylation of IRS-1 at Ser612, a mechanism that probably underlies the inhibition of IRS-1 signaling by PKCε. Using confocal microscopy, we found that both isomers of CLA induced lipid accumulation in C9 cells with the presence of spherical cytosolic vesicles, suggesting their identity as neutral lipid droplets. These findings indicate that cis-9, trans-11-CLA and trans-10, cis-12-CLA isomers could have a significant role in the development of insulin resistance in hepatic C9 cells through IRS-1 serine phosphorylation, PKCε activation, and hepatic lipid accumulation.  相似文献   

16.
Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1−/− knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes.  相似文献   

17.
A number of studies have been carried out to examine the biological function of conjugated linoleic acid (CLA) and its potential health benefits. However, not much is known about how CLA isomers mediate their effect on angiogenesis and vascularization during early placentation. In this paper we demonstrate that cis-9,trans-11(c9,t11)-CLA stimulated the expression of angiopoietin like-4 (ANGPTL4) mRNA and protein accompanied by tube formation in first trimester placental trophoblast cells, HTR8/SVneo whereas the other CLA isomer, trans-10,cis-12 (t10,c12)-CLA had no such effects. c9,t11-CLA however did not stimulate expression of the most potent angiogenic factor, vascular endothelial growth factor (VEGF) in these cells. Silencing ANGPTL4 in these cells significantly reduced the stimulatory effect of c9,t11-CLA on tube formation, indicating the involvement of ANGPTL4. In addition, c9,t11-CLA increased the mRNA expression of several pro-angiogenic factors such as fatty acid binding protein-4 (FABP4), cyclooxygenase-2 (COX-2) and adipose differentiation-related protein (ADRP) in HTR8/SVneo cells. c9,t11-CLA also induced the uptake of docosahexaenoic acid, 22:6n − 3 (DHA), a stimulator of tube formation in these cells. Triacsin C, an acylCoA synthetase inhibitor, attenuated c9,t11-CLA induced DHA uptake, tube formation and cellular proliferation in HTR8/SVneo cells.  相似文献   

18.
Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The predominant isomers in ruminant fats are cis-9,trans-11 CLA (c9,t11-CLA), and trans-10,cis-12 CLA (t10,c12-CLA). The biological activities of CLA have received considerable attention because of its protective effects in cancer, immune function, obesity and atherosclerosis. Importantly, dietary administration of a blend of the two most abundant isomers of CLA, has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis in the ApoE?/? murine model. Studies investigating the mechanisms involved in CLA induced protective effects are continually emerging with results from both in vitro and in vivo models yielding confounding and often inconsistent results depending on both the isomer of CLA and the species under investigation. The purpose of this review is to comprehensively discuss the effects of CLA on monocyte/macrophage function in atherosclerosis. This review also discusses the possible mechanisms through which CLA mediates its atheroprotective effects with a particular emphasis on the migratory capacity of the monocyte and the inflammatory and cholesterol homeostasis of the macrophage.  相似文献   

19.
Interaction of eosinophils and bronchial epithelial cells plays a pivotal role in maintaining inflammatory airway disease. Since conjugated linoleic acids (CLA) are suggested to exert anti-inflammatory effects, one purpose of this study was to compare cis-9,trans-11-CLA and trans-10,cis-12-CLA with regard to their influence on the stimulus-induced activation of eosinophils. ECP (eosinophil cationic protein) released in co-culture of stimulated and CLA-treated eosinophils with stimulated bronchial epithelial cells (BEAS-2B) was measured and cis-9,trans-11-CLA was found to be most potent in inhibiting ECP formation. Further, expression of the activation markers CD69 and CD13 induced by various stimuli (TNF-alpha, IL-5, IL-3) was significantly reduced in the presence of cis-9,trans-11-CLA. Subsequently, various concentrations of cis-9,trans-11-CLA vs. linoleic acid (LA, cis-9,cis-12-octadecadienoic acid) were tested for the effect on proliferative response and release of the pro-inflammatory cytokine IL-8 in stimulated BEAS-2B. Addition of cis-9,trans-11-CLA attenuated cell growth and significantly reduced IL-8 production at mRNA and protein levels. In contrast, LA had a slight stimulating effect on proliferation and was less effective in reducing the cytokine release. It was demonstrated that the inhibitory effect of cis-9,trans-11-CLA on IL-8 production is mediated through activation of the nuclear receptor PPARgamma, since blocking the receptor with a selective antagonist (GW9662) restored the stimulus-induced enhancement in IL-8 mRNA expression and protein secretion. PPARgamma has previously been shown to be closely involved in the downregulation of inflammation during hyperresponsiveness related to pulmonary immune responses. Thus, targeting PPARgamma, cis-9,trans-11-CLA might be of therapeutic value in the focus of airway disease while ameliorating inflammatory processes by affecting epithelial and eosinophil functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号