首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postmating sexual selection theory predicts that in allopatry reproductive traits diverge rapidly and that the resulting differentiation in these traits may lead to restrictions to gene flow between populations and, eventually, reproductive isolation. In this paper we explore the potential for this premise in a group of damselflies of the family Calopterygidae, in which postmating sexual mechanisms are especially well understood. Particularly, we tested if in allopatric populations the sperm competition mechanisms and genitalic traits involved in these mechanisms have indeed diverged as sexual selection theory predicts. We did so in two different steps. First, we compared the sperm competition mechanisms of two allopatric populations of Calopteryx haemorrhoidalis (one Italian population studied here and one Spanish population previously studied). Our results indicate that in both populations males are able to displace spermathecal sperm, but the mechanism used for sperm removal between both populations is strikingly different. In the Spanish population males seem to empty the spermathecae by stimulating females, whereas in the Italian population males physically remove sperm from the spermathecae. Both populations also exhibit differences in genital morphometry that explain the use of different mechanisms: the male lateral processes are narrower than the spermathecal ducts in the Italian population, which is the reverse in the Spanish population. The estimated degree of phenotypic differentiation between these populations based on the genitalic traits involved in sperm removal was much greater than the differentiation based on a set of other seven morphological variables, suggesting that strong directional postmating sexual selection is indeed the main evolutionary force behind the reproductive differentiation between the studied populations. In a second step, we examined if a similar pattern in genital morphometry emerge in allopatric populations of this and other three species of the same family (Calopteryx splendens, C. virgo and Hetaerina cruentata). Our results suggest that there is geographic variation in the sperm competition mechanisms in all four studied species. Furthermore, genitalic morphology was significantly divergent between populations within species even when different populations were using the same copulatory mechanism. These results can be explained by probable local coadaptation processes that have given rise to an ability or inability to reach and displace spermathecal sperm in different populations. This set of results provides the first direct evidence of intraspecific evolution of genitalic traits shaped by postmating sexual selection.  相似文献   

2.
Genetic variation in wild Asian populations and U.S. hatchery stocks of Crassostrea ariakensis was examined using polymerase chain reactions with restriction fragment length polymorphism (PCR-RFLP) analysis of both the mitochondrial COI gene and the nuclear internal transcribed spacer (ITS) 1 region and using 3 microsatellite markers. Hierarchical analysis of molecular variance and pairwise comparisons revealed significant differentiation (P < 0.05) between samples from the northern region, represented by collections from China and Japan, and 2 of 3 samples from southern China. PCR-RFLP patterns were identified that were diagnostic for the northern (N-type) and southern (S-type) groups. Microsatellite marker profiles were used to assign each oyster to one of the two northern or two southern populations. Results for more than 97% of the oysters were consistent with the PCR-RFLP patterns observed for each individual in that oysters with N-type patterns were assigned to one of the northern populations and those with S-type patterns to one of the southern populations. At one site of the Beihai (B) region in southern China a mix of individuals with either the N-type or S-type PCR-RFLP genotypes was found. No heterozygotes at the nuclear ITS-1 locus were found in the sample, possibly indicating reproductive isolation in sympatry. Microsatellite assignment test results of the B individuals were also consistent with identifications as either the N-type or S-type based on PCR-RFLP patterns. The parental population for one hatchery stock was this B sample, which initially was composed of almost equal numbers of northern and southern genetic types. After hatchery spawns, however, more than 97% of the progeny fell into the northern genetic group by PCR-RFLP and microsatellite assignment test analyses, indicating that the individuals with the southern genotype contributed little to the spawn, owing to gametic incompatibility, differential larval survival, or a difference in timing of sexual maturity. Overall, results suggested that oysters collected as C. ariakensis in this study, and likely in other studies as well, include two different sympatric species with some degree of reproductive isolation.  相似文献   

3.
Abstract. Diminished populations of eastern oysters Crassostrea virginica in Chesapeake Bay have stimulated proposals to introduce Crassostrea ariakensis from Asia to restore oyster stocks. As part of a program evaluating possible ramifications of such an introduction, we studied how invertebrate predators responded to this non-native oyster. We compared predation activity under laboratory conditions by oyster drills ( Urosalpinx cinerea; Eupleura caudata ) that bore through an oyster's shell and by the seastar Asterias forbesi that pulls shell valves apart. These three predators preyed significantly (p<0.05) more on the familiar C. virginica than on the novel C. ariakensis . We previously reported that five crab species preyed significantly more on C. ariakensis than on C. virginica , with predation by polyclad flatworms similar between oyster species. Thus, the drills and the seastar differed from the crabs and the flatworms in their response to novel prey. When Urosalpinx cinerea was placed in a Y-maze after being held for 40 d with oysters of one species or the other, the drills moved toward C. virginica effluent more than toward C. ariakensis effluent. This response did not depend on the species of oyster the drills had been held with, suggesting that the drills were responding to more familiar infochemicals from eastern oysters than from the non-native oysters.  相似文献   

4.
The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.  相似文献   

5.
Interspecific studies indicate that sperm morphology and other ejaculatory traits diverge more rapidly than other types of character in Drosophila and other taxa. This pattern has largely been attributed to postcopulatory sexual selection involving interaction between the sexes. Such divergence has been suggested to lead rapidly to reproductive isolation among populations and thus to be an 'engine of speciation.' Here, we test two critical predictions of this hypothesis: (i) there is significant variation in reproductive traits among incipient species; and (ii) divergence in interacting sex-specific traits exhibits a coevolutionary pattern among populations within a species, by examining geographical variation in Drosophila mojavensis, a species in the early stages of speciation. Significant among-population variation was identified in sperm length and female sperm-storage organ length, and a strong pattern of correlated evolution between these interacting traits was observed. In addition, crosses among populations revealed coevolution of male and female contributions to egg size. Support for these two important predictions confirms that coevolving internal characters that mediate successful reproduction may play an important part in speciation. The next step is to determine exactly what that role is.  相似文献   

6.
Gill bacterial communities of Chama pacifica, an Indo-Pacific invasive oyster to the eastern Mediterranean Sea, were compared with those of Chama savignyi, its northern Red Sea congeneric species. Summer and winter bacterial populations were characterized and compared using 16S rDNA clone libraries, and seasonal population dynamics were monitored by automated ribosomal intergenic spacer analysis (ARISA). Clone libraries revealed a specific clade of bacteria, closely related to marine endosymbionts from the Indo-Pacific, found in both ecosystems, of which one taxon was conserved in oysters from both sites. This taxon was dominant in summer libraries and was weakly present in winter ones, where other members of this group were dominant. ARISA results revealed significant seasonal variation in bacterial populations of Mediterranean Sea oysters, as opposed to Red Sea ones that were stable throughout the year. We suggest that this conserved association between bacteria and oyster reflects either a symbiosis between the oyster host and some of its bacteria, a co-invasion of both parties, or both.  相似文献   

7.
Adaptation to seasonal changes in the northern hemisphere includes an ability to predict the forthcoming cold season from gradual changes in environmental cues early enough to prepare for the harsh winter conditions. The magnitude and speed of changes in these cues vary between the latitudes, which induces strong selection pressures for local adaptation.We studied adaptation to seasonal changes in Drosophila montana, a northern maltfly, by defining the photoperiodic conditions leading to adult reproductive diapause along a latitudinal cline in Finland and by measuring genetic differentiation and the amount of gene flow between the sampling sites with microsatellites. Our data revealed a clear correlation between the latitude and the critical day length (CDL), in which half of the females of different cline populations enter photoperiodic reproductive diapause. There was no sign of limited gene flow between the cline populations, even though these populations showed isolation by distance. Our results show that local adaptation may occur even in the presence of high gene flow, when selection for locally adaptive life-history traits is strong. A wide range of variation in the CDLs of the fly strains within and between the cline populations may be partly due to gene flow and partly due to the opposing selection pressures for fly reproduction and overwinter survival. This variation in the timing of diapause will enhance populations' survival over the years that differ in the severity of the winter and in the length of the warm period and may also help them respond to long-term changes in environmental conditions.  相似文献   

8.
Gulf of Mexico versus Atlantic populations of several coastal species in the southeastern United States are known to differ sharply in genetic composition, but most transitional zones have not previously been examined in detail. Here we employ molecular markers from mitochondrial and nuclear loci to characterize cytonuclear genetic associations at meso- and microgeographic scales along an eastern Florida transitional zone between genetically distinct Atlantic and Gulf populations of the American oyster, Crassostrea virginica. The single- and multilocus cytonuclear patterns display: (1) a cline extending along 340 km of the east Florida coastline; (2) a pronounced step in the cline centered at Cape Canaveral (shifts in allelic frequencies by 50–75% over a 20 km distance); (3) a close agreement of observed genotypic frequencies with Hardy-Weinberg expectations within locales; and (4) mild or nonexistent nuclear and cytonuclear disequilibria in most local population samples. These results imply: (1) considerable restrictions to interpopulational gene flow along the eastern Florida coastline; (2) within locales, free interbreeding (as opposed to mere population admixture) between Gulf and Atlantic forms of oysters; and (3) localized population recruitment in the transition zone localities. These findings demonstrate that marine organisms with high dispersal potential via long-lived pelagic larvae can nonetheless display pronounced spatial population genetic structure, and more generally they exemplify the utility of pronounced genetic transition zones for the study of population level processes.  相似文献   

9.
A deep genetic cline between southern populations of the barnacle Balanus glandula (from about Monterey Bay southward) and northern populations (from northern California through Alaska) has recently been described. If this pattern is due to historical isolation and genetic drift, we expect it to have formed recently and represent a transient, nonequilibrium state. However, this cline appears to have formed well before the last glacial maximum. Our assays of sequence diversity at a region of mitochondrial cytochrome oxidase I, combined with coalescent estimators of the time of separation for these two regions, suggest that a late Pleistocene event more than 100 thousand years ago may be responsible for the initial separation. This suggests that either strong oceanographic mechanisms or natural selection have maintained the cline, because there has clearly been adequate time for this cline or polymorphism to resolve itself by genetic drift and migration. However, reliance on only a single mitochondrial marker for which the substitution rate has been estimated still limits the resolution of our analysis.  相似文献   

10.
The gynogenetic livebearing Amazon molly (Poecilia formosa) is a sexual parasite that exploits males of closely related species for sperm. This is needed as physiological stimulus for embryo development; however, none of the male’s genes are normally incorporated into the genome of the gynogenetic offspring. Mostly diploid individuals were reported from the natural habitats in North-Eastern Mexico and South-Eastern Texas but stable populations of triploids have been reported from the Río Soto la Marina drainage and in the Río Guayalejo in North-Eastern Mexico. Triploidy is the result of defects in the mechanisms that normally clear the host sperm from the ameiotic diploid egg. Triploids also reproduce gynogenetically and their frequencies fluctuate markedly between years, seasons, and localities. To understand the dynamics of this mating system, it is important to understand the relative reproductive success of triploids and diploids. We hypothesize that triploids should have a selective advantage over diploids due to heterosis and/or gene redundancy based on the additional genetic material from the sexual host. However, clonal competition experiments revealed a clear reproductive advantage of diploids competing with triploids. This result contradicts not only our hypothesis but also the stable co-existence of diploids and triploids in natural habitats. Frequency dependent selection, niche partitioning and environmental heterogeneity are discussed as possible explanations.  相似文献   

11.
The recent development of Pacific oyster (Crassostrea gigas) SNP genotyping arrays has allowed detailed characterisation of genetic diversity and population structure within and between oyster populations. It also raises the potential of harnessing genomic selection for genetic improvement in oyster breeding programmes. The aim of this study was to characterise a breeding population of Australian oysters through genotyping and analysis of 18 027 SNPs, followed by comparison with genotypes of oyster sampled from Europe and Asia. This revealed that the Australian populations had similar population diversity (HE) to oysters from New Zealand, the British Isles, France and Japan. Population divergence was assessed using PCA of genetic distance and revealed that Australian oysters were distinct from all other populations tested. Australian Pacific oysters originate from planned introductions sourced from three Japanese populations. Approximately 95% of these introductions were from geographically, and potentially genetically, distinct populations from the Nagasaki oysters assessed in this study. Finally, in preparation for the application of genomic selection in oyster breeding programmes, the strength of LD was evaluated and subsets of loci were tested for their ability to accurately infer relationships. Weak LD was observed on average; however, SNP subsets were shown to accurately reconstitute a genomic relationship matrix constructed using all loci. This suggests that low‐density SNP panels may have utility in the Australian population tested, and the findings represent an important first step towards the design and implementation of genomic approaches for applied breeding in Pacific oysters.  相似文献   

12.
Recently diverged populations in the early stages of speciation offer an opportunity to understand mechanisms of isolation and their relative contributions. Drosophila willistoni is a tropical species with broad distribution from Argentina to the southern United States, including the Caribbean islands. A postzygotic barrier between northern populations (North America, Central America, and the northern Caribbean islands) and southern populations (South American and the southern Caribbean islands) has been recently documented and used to propose the existence of two different subspecies. Here, we identify premating isolation between populations regardless of their subspecies status. We find no evidence of postmating prezygotic isolation and proceeded to characterize hybrid male sterility between the subspecies. Sterile male hybrids transfer an ejaculate that is devoid of sperm but causes elongation and expansion of the female uterus. In sterile male hybrids, bulging of the seminal vesicle appears to impede the movement of the sperm toward the sperm pump, where sperm normally mixes with accessory gland products. Our results highlight a unique form of hybrid male sterility in Drosophila that is driven by a mechanical impediment to transfer sperm rather than by an abnormality of the sperm itself. Interestingly, this form of sterility is reminiscent of a form of infertility (azoospermia) that is caused by lack of sperm in the semen due to blockages that impede the sperm from reaching the ejaculate.  相似文献   

13.
1. Theories of latitudinal compensation predict that individuals living in colder temperature regimes should physiologically compensate for the slowing of standard physiological rates, owing to the relatively low temperature of their local environments, by increasing their metabolic rate in colder water temperatures relative to individuals living in warmer water temperature regimes.
2. This hypothesis was tested with oyster strains originally from geographically separated populations that were raised in a common environment for seven generations. The physiological parameter measured was ciliary activity across a temperature gradient.
3. Support for the latitudinal compensation hypothesis was found: the strain originally from the colder temperature regime had more active cilia at lower experimental temperatures than individuals originally from the warmer temperature regime. Ciliary activity of the more northern Long Island Sound oysters was significantly greater than activity in the more southern Delaware Bay oysters at temperatures of –1, 2 and 6 °C.
4. These results suggest that there is genetically based physiological differentiation between these populations of oysters consistent with the latitudinal compensation for local temperature regime.  相似文献   

14.
Marteilioides chungmuensis, a protozoan paramyxean parasite, infects the oocytes of the Pacific oyster, Crassostrea gigas. The effects of infection on the reproductive cycle of C. gigas were investigated over two consecutive years at Okayama Prefecture, Japan. In male oysters, gonadal development began during February/March, maturity was achieved in June and spawning activity extended from July to September. In November and December, male oysters were not seen, probably because their gonads regressed to connective tissue and they transformed into undifferentiated oysters. By contrast, female oysters, in which parasite spore formation occurred, were still carrying oocytes until the following March and the spawning process of female oysters took 5 months longer than that of males in epizootic areas. The prevalence of M. chungmuensis infection increased from July to September, when most female oysters had their spawning period, and declined from October to the following April when oysters were at the spent stage. The prevalence of infection increased again in May of the following year and high prevalence was observed in the following July. When prevalence was compared between oysters of different age classes, higher prevalence was detected in older than in younger oysters. Histological examination showed that infected oysters produced oocytes continuously and spawned repeatedly from October to March, during which period healthy oysters were reproductively inactive. Parasites can infect the oocytes of infected oysters throughout the longer spawning period. These observations suggest that M. chungmuensis extends the reproductive period of infected oysters for its own reproductive benefit.  相似文献   

15.
In temperate mangrove forests in New South Wales, Australia, the limpet Patelloida mimula Iredale lives on the oyster Saccostrea commercialis Iredale and Roughley, which, along with mangrove trees, provide the only hard substrata in a habitat otherwise dominated by soft-sediment. The objective of this study was to ascertain the degree of association between the limpet and the oyster by examining their patterns of co-occurrence in the forest and the relationship between individual pairs of limpets and oysters. Sampling of the distribution and abundance of limpets and oysters throughout the mangrove forest revealed that limpets were rarely present on substrata other than oysters. Patterns of abundance of limpets were, however, not directly related to the amount of habitat provided by the oysters. For example, there was a dramatic decline in the abundance of oysters from seaward to landward in the mangrove forest which was not reflected in the densities of limpets. Consequently, oysters appear to set the limits of distribution of limpets, but other factors modify their broad-scale patterns of distribution and abundance within these bounds. Limpets leave scars on oysters which might be home sites. About 98% of oysters with limpets had only one limpet per surface of oyster, and the distribution of limpets was overdispersed or repulsed. Moreover, in some areas of the forest, the lengths of limpets were directly related to lengths of oysters. Tracking of individual limpets for 13 days revealed that > 70% remained on the same scar of an oyster. This evidence suggests that for some limpets there is a strong association with particular oysters. Factors determining the distribution, abundance, and sizes of oysters are likely to be important sources of variation to the structure of populations of P. mimula in temperate mangrove forests.  相似文献   

16.
Post-mating reproductive isolating mechanisms may be among the earliest reproductive barriers to emerge among incipient species. Trinidadian guppy, Poecilia reticulata, populations in the Caroni and Oropouche drainages in Northern Trinidad exhibit marked genetic divergence and provide an ideal system in which to search for these barriers. We inseminated virgin females with equal amounts of sperm from two males, a 'native' male from the female's own population and a 'foreign' male from the other drainage. Artificial insemination ensured that mating order and mate choice did not affect the outcome. Paternities were assigned to the resulting broods using microsatellite markers. As predicted, sperm from native males had precedence over foreign sperm. Moreover, this effect was symmetrical for both drainages. In contrast, we detected no native sperm precedence in controls, in which females received sperm from the same and another population within the same drainage. Our results show that gametic isolation can arise between geographically proximate, though genetically divergent, populations of a single species and highlight the potential role of this process in speciation.  相似文献   

17.
When using biological control against pest populations, more than one biocontrol agent might be introduced simultaneously. This could be counterproductive in the event of negative interactions between the biocontrol agents. Within and between species interactions have a strong impact on mating behaviour and reproduction, and can have an impact on the effectiveness of biological control. We studied the reproductive compatibility between two geographically isolated strains (Brazil and Peru) of Eccritotarsus catarinensis (Heteroptera: Miridae), a biocontrol agent against the invasive aquatic weed, Eichhornia crassipes. By performing inter- and intra-species mating experiments, we investigated whether or not males from each of the cryptic species would be able to distinguish between partners from either species, and if they would mate with partners from the opposite species. Our results showed the decrease in lifetime fecundity, and most importantly, the lack of production of offspring from eggs resulting from forced hybridisation. We showed that Peruvian males mated only with females from their own species, and did not mate with females from the Brazilian species. In contrast, Brazilian males mated equally with females from both species, but needed significantly more time in order to commence a mating, and no offspring were produced from eggs resulting from hybridisation. Although future studies demand more rigorous controls, our results indicate asymmetrical sexual isolation between the two species. We speculate on mechanisms involved in reproductive isolation in the two cryptic species, and the possible implications for effective biocontrol, and include some morphological measurements that might support our assumptions.  相似文献   

18.
Luck N  Dejonghe B  Fruchard S  Huguenin S  Joly D 《Genetica》2007,130(3):257-265
Sperm competition is expected to be a driving force in sexual selection. In internally fertilized organisms, it occurs when ejaculates from more than one male are present simultaneously within the female’s reproductive tract. It has been suggested that greater sperm size may improve the competitive ability of sperm, but studies provide contradictory results depending on the species. More recently, the role of females in the evolution of sperm morphology has been pointed out. We investigate here the male and female effects that influence sperm precedence in the giant sperm species, Drosophila bifurca Patterson & Wheeler. Females were mated with two successive males, and the paternity outcomes for both males were analyzed after determining sperm transfer and storage. We found very high values of last male sperm precedence, suggesting a strong interaction between rival sperm. However, the data also indicate high frequencies of removal of the sperm of the first male from the female reproductive tract prior to any interaction with the second male. This implies that successful paternity depends mainly on successful sperm storage. Knowing what happens to the sperm within females appears to be a prerequisite for disentangling post-copulatory sexual interactions between males and females.  相似文献   

19.
The evolutionary sequence of events in the evolution of reproductive barriers between species is at the core of speciation biology. Where premating barriers fail, post-mating barriers, such as conspecific sperm precedence (CSP), gamete incompatibility (GI) and hybrid inviability (HI) may evolve to prevent the production of (often) costly hybrid offspring with reduced fitness. We tested the role of post-mating mechanisms for the reproductive isolation between two sunfish species [bluegill (BG) Lepomis macrochirus and pumpkinseed (PS) Lepomis gibbosus] and their first-generation hybrids. Performing in vitro sperm competition experiments, we observed asymmetric CSP as main post-mating isolation mechanism when BG and PS sperm were competing for PS eggs, whereas when sperm from both species were competing for BG eggs it was HI. Furthermore, hybrid sperm--although fertile in the absence of competition--were outcompeted by sperm of either parental species. This result may at least partly explain previous observations that natural hybridization in the study system is unidirectional.  相似文献   

20.
Understanding pre‐ and post‐copulatory mechanisms of sexual selection can provide insights into the evolution of male reproductive strategies. The phenotype‐linked fertility hypothesis postulates that male sperm quality and secondary sexual characteristics will positively co‐vary, whereas the sperm competition hypothesis predicts a negative association between those traits. Male reproductive traits often show variation throughout the reproductive period, suggesting that the relationship between pre‐ and post‐copulatory sexual selection may vary temporally. Here, we evaluated the relationship between secondary sexual character and sperm traits and its temporal variation in Salvator rufescens, a south American lizard. We observed a negative relationship between jaw muscle and principal piece length of sperm and a variation in the relationship between pre‐ and post‐copulatory traits throughout the reproductive period. Collectively, our results evidenced a trade‐off between pre‐ and post‐copulatory traits and a strong seasonal flexibility of male reproductive strategies in this lizard species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号