首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rnr4p, a novel ribonucleotide reductase small-subunit protein.   总被引:11,自引:3,他引:8       下载免费PDF全文
Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.  相似文献   

4.
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.  相似文献   

5.
6.
Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before.  相似文献   

7.
8.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

9.
Sml1p is a small 104-amino acid protein from Saccharomyces cerevisiae that binds to the large subunit (Rnr1p) of the ribonucleotide reductase complex (RNR) and inhibits its activity. During DNA damage, S phase, or both, RNR activity must be tightly regulated, since failure to control the cellular level of dNTP pools may lead to genetic abnormalities, such as genome rearrangements, or even cell death. Structural characterization of Sml1p is an important step in understanding the regulation of RNR. Until now the oligomeric state of Sml1p was unknown. Mass spectrometric analysis of wild-type Sml1p revealed an intermolecular disulfide bond involving the cysteine residue at position 14 of the primary sequence. To determine whether disulfide bonding is essential for Sml1p oligomerization, we mutated the Cys14 to serine. Sedimentation equilibrium measurements in the analytical ultracentrifuge show that both wild-type and C14S Sml1p exist as dimers in solution, indicating that the dimerization is not a result of a disulfide bond. Further studies of several truncated Sml1p mutants revealed that the N-terminal 8-20 residues are responsible for dimerization. Unfolding/refolding studies of wild-type and C14S Sml1p reveal that both proteins refold reversibly and have almost identical unfolding/refolding profiles. It appears that Sml1p is a two-domain protein where the N-terminus is responsible for dimerization and the C-terminus for binding and inhibiting Rnr1p activity.  相似文献   

10.
An X  Zhang Z  Yang K  Huang M 《Genetics》2006,173(1):63-73
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.  相似文献   

11.
Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells' genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase zeta in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.  相似文献   

12.
13.
14.
15.
T4 contains two groups of genes with similarity to homing endonucleases, the seg-genes (similarity to endonucleases encoded by group I introns) containing GIY-YIG motifs and the mob-genes (similarity to mobile endonucleases) containing H-N-H motifs. The four seg-genes characterized to date encode homing endonucleases with cleavage sites close to their respective gene loci while none of the mob-genes have been shown to cleave DNA. Of 18 phages screened, only T4 was found to have mobC while mobE genes were found in five additional phages. Interestingly, three phages encoded a seg-like gene (hereby called segH) with a GIY-YIG motif in place of mobC. An additional phage has an unrelated gene called hef (homing endonuclease-like function) in place of the mobE gene. The gene products of both novel genes displayed homing endonuclease activity with cleavage site specificity close to their respective genes. In contrast to intron encoded homing endonucleases, both SegH and Hef can cleave their own DNA as well as DNA from phages without the genes. Both segH and mobE (and most likely hef) can home between phages in mixed infections. We discuss why it might be a selective advantage for phage freestanding homing endonucleases to cleave both HEG-containing and HEG-less genomes.  相似文献   

16.
Ribonucleotide reductase is responsible for providing the deoxyribonucleotide precursors for DNA synthesis. In most species the enzyme consists of a large and a small subunit, both of which are required for activity. In mammalian cells, the small subunit is the site of action of several antitumor agents, including hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIQ). The mRNA levels for the small subunit of ribonucleotide reductase (RNR2) and sensitivity to hydroxyurea and MAIQ were determined in four strains of the yeast, Saccharomyces cerevisiae. Two strains exhibited significantly different sensitivities to both hydroxyurea and MAIQ, which closely correlated with differences in the levels of RNR2 mRNA. These results are consistent with recent observations with mammalian cells in culture, and indicate that a common mechanism of resistance to hydroxyurea and related drugs occurs through the elevation in ribonucleotide reductase message levels. A transplason mutagenized strain with marked structural modifications in RNR2 DNA and mRNA showed an extreme hypersensitivity to hydroxyurea but not to MAIQ, providing evidence that the two drugs do not inhibit the RNR2 subunit by the same mechanism. In addition, a yeast strain isolated for low but reproducible resistance to MAIQ exhibited a sensitivity to hydroxyurea similar to the parental wild-type strain, supporting the idea that the two drugs inhibit the activity of RNR2 by unique mechanisms. These yeast strains provide a useful approach for further studies into the regulation of eucaryotic ribonucleotide reduction and drug resistance mechanism involving a key rate-limiting step in DNA synthesis.  相似文献   

17.
Ribonucleotide reductase catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. The gene encoding the small subunit of ribonucleotide reductase was isolated from a Saccharomyces cerevisiae genomic DNA expression library in lambda gt11 by a fortuitous cross-reaction with anti-RecA antibodies. The cross-reaction was due to an identity between the last four amino acids of each protein. The gene has been named RNR2 and is centromere linked on chromosome X. The nucleotide sequence was determined, and the deduced amino acid sequence, 399 amino acids, shows extensive homology with other eucaryotic ribonucleotide reductases. Transplason mutagenesis was used to disrupt the RNR2 gene. A novel assay using colony color sectoring was developed to demonstrate visually that RNR2 is essential for mitotic viability. RNR2 encodes a 1.5-kilobase mRNA whose levels increase 18-fold after treatment with the DNA-damaging agent 4-nitroquinoline 1-oxide. CDC8 was also found to be inducible by DNA damage, but POL1 and URA3 were not inducible by 4-nitroquinoline 1-oxide. The expression of these genes defines a new mode of regulation for enzymes involved in DNA biosynthesis and sharpens our picture of the events leading to DNA repair in eucaryotic cells.  相似文献   

18.
Mobile elements are commonly referred to as selfish repetitive DNA sequences. However, mobile elements represent a unique and underutilized group of molecular markers. Several of their characteristics make them ideally suited for use as tools in forensic genomic applications. These include their nature as essentially homoplasy-free characters, they are identical by descent, the ancestral state of any insertion is known to be the absence of the element, and many mobile element insertions are lineage specific. In this review, we provide an overview of mobile element biology and describe the application of certain mobile elements, especially the SINEs and other retrotransposons, to forensic genomics. These tools include quantitative species-specific DNA detection, analysis of complex biomaterials, and the inference of geographic origin of human DNA samples.  相似文献   

19.
长末端重复序列(Long terminal repeat,LTR)反转录转座子是真核生物基因组中普遍存在的一类可移动的DNA序列,它们以RNA为媒介,通过"复制粘贴"机制在基因组中不断自我复制。在高等植物中,许多活性的LTR反转录转座子已被详尽研究并应用于分子标记技术、基因标签、插入型突变及基因功能等分析。本文对植物活性LTR反转录转座子进行全面的调查,并对其结构、拷贝数和分布以及转座特性进行系统的归纳,分析了植物活性LTR反转录转座子的gag(种属特异抗原)和pol(聚合酶)序列特征,以及LTR序列中顺式调控元件的分布。研究发现自主有活性的LTR反转录转座子必须具备LTR区域以及编码Gag、Pr、Int、Rt和Rh蛋白的基因区。其中两端LTR区域具有高度同源性且富含顺式调控元件;Rt蛋白必备RVT结构域;Rh蛋白必备RNase_H1_RT结构域。这些结果为后续植物活性LTR反转录转座子的鉴定和功能分析奠定了重要基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号