首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.  相似文献   

2.
Diastolic heart failure (HF) accounts for up to 50% of all HF admissions, with hypertension being the major cause of diastolic HF. Hypertension is characterized by left ventricular (LV) hypertrophy (LVH). Proinflammatory cytokines are increased in LVH and hypertension, but it is unknown if they mediate the progression of hypertension-induced diastolic HF. We sought to determine if interferon-γ (IFNγ) plays a role in mediating the transition from hypertension-induced LVH to diastolic HF. Twelve-week old BALB/c (WT) and IFNγ-deficient (IFNγKO) mice underwent either saline (n = 12) or aldosterone (n = 16) infusion, uninephrectomy, and fed 1% salt water for 4 wk. Tail-cuff blood pressure, echocardiography, and gene/protein analyses were performed. Isolated adult rat ventricular myocytes were treated with IFNγ (250 U/ml) and/or aldosterone (1 μM). Hypertension was less marked in IFNγKO-aldosterone mice than in WT-aldosterone mice (127 ± 5 vs. 136 ± 4 mmHg; P < 0.01), despite more LVH (LV/body wt ratio: 4.9 ± 0.1 vs. 4.3 ± 0.1 mg/g) and worse diastolic dysfunction (peak early-to-late mitral inflow velocity ratio: 3.1 ± 0.1 vs. 2.8 ± 0.1). LV ejection fraction was no different between IFNγKO-aldosterone vs. WT-aldosterone mice. LV end systolic dimensions were decreased significantly in IFNγKO-aldosterone vs. WT-aldosterone hearts (1.12 ± 0.1 vs. 2.1 ± 0.3 mm). Myocardial fibrosis and collagen expression were increased in both IFNγKO-aldosterone and WT-aldosterone hearts. Myocardial autophagy was greater in IFNγKO-aldosterone than WT-aldosterone mice. Conversely, tumor necrosis factor-α and interleukin-10 expressions were increased only in WT-aldosterone hearts. Recombinant IFNγ attenuated cardiac hypertrophy in vivo and modulated aldosterone-induced hypertrophy and autophagy in cultured cardiomyocytes. Thus IFNγ is a regulator of cardiac hypertrophy in diastolic HF and modulates cardiomyocyte size possibly by regulating autophagy. These findings suggest that IFNγ may mediate adaptive downstream responses and challenge the concept that inflammatory cytokines mediate only adverse effects.  相似文献   

3.
The prevalence of severe obesity is increasing worldwide in adolescents. Whether it is associated with functional myocardial abnormalities remains largely unknown, potentially because of its frequent association with other cardiovascular risk factors and also use of insensitive techniques to detect subclinical changes in myocardial function. We used 2D vector velocity imaging (VVI) to investigate early changes in left ventricular (LV) myocardial function in youths with isolated severe obesity. Thirty‐seven asymptomatic severely obese adolescents free of diabetes and hypertension, and 24 lean controls were enrolled. LV longitudinal, basal, and apical circumferential strain, strain rate (SR), rotations, and LV twist were measured. Obese adolescents had greater LV mass and reduced systolic and early diastolic tissue Doppler imaging (TDI) velocities than lean counterparts. L strain (?24%) and systolic and early diastolic SR were also diminished in the obese, whereas no intergroup differences existed for the circumferential deformation indexes. LV twist was more pronounced in the obese (+1.7°, P < 0.01) on account of greater apical rotation only (4.1 ± 0.9 vs. 5.2 ± 1.2°, P < 0.01), potentially compensating for the loss in longitudinal function. Systolic—diastolic coupling, an important component of early filling and diastolic function, was maintained with severe obesity. No intergroup differences were reported regarding time to peak values for all VVI indexes highlighting that dynamics of strain and twist/untwist along the cardiac cycle was preserved with severe obesity. Isolated severe obesity in adolescents, at a preclinical stage, is associated with changes in myocardial deformation and torsional mechanics that could be in part related to alterations in relaxation and contractility properties of subendocardial fibers.  相似文献   

4.
Obesity adversely affects myocardial metabolism, efficiency, and diastolic function. Our objective was to determine whether weight loss can ameliorate obesity-related myocardial metabolism and efficiency derangements and that these improvements directly relate to improved diastolic function in humans. We studied 30 obese (BMI >30 kg/m2) subjects with positron emission tomography (PET) (myocardial metabolism, blood flow) and echocardiography (structure, function) before and after marked weight loss from gastric bypass surgery (N = 10) or moderate weight loss from diet (N = 20). Baseline BMI, insulin resistance, hemodynamics, left ventricular (LV) mass, systolic function, myocardial oxygen consumption (MVO2), and fatty acid (FA) metabolism were similar between the groups. MVO2/g decreased after diet-induced weight loss (P = 0.009). Total MVO2 decreased after dietary (P = 0.02) and surgical weight loss (P = 0.0006) and was related to decreased BMI (P = 0.006). Total myocardial FA utilization decreased (P = 0.03), and FA oxidation trended lower (P = 0.06) only after surgery. FA esterification and LV efficiency were unchanged. After surgical weight loss, LV mass decreased by 23% (Doppler-derived) E/E' by 33%, and relaxation increased (improved) by 28%. Improved LV relaxation related significantly to decreased BMI, insulin resistance, total MVO2, and LV mass but not FA utilization. Decreased total MVO(2) predicted LV relaxation improvement independent of BMI change (P = 0.02). Weight loss can ameliorate the obesity-related derangements in myocardial metabolism and LV structure and diastolic function. Decreased total MVO2 independently predicted improved LV relaxation, suggesting that myocardial oxygen metabolism may be mechanistically important in determining cardiac relaxation.  相似文献   

5.
The purpose of the study was to evaluate the dynamics of diastolic and systolic function from rest to maximal exercise using conventional echocardiography and tissue Doppler imaging (TDI) in obese prepubertal boys compared to age‐matched lean controls. Eighteen obese (10 with first degree obesity and 8 with second degree obesity according to French curves, BMI: 23.3 ± 1.8 and 29.0 ± 2.0 kg/m2, respectively) and 17 lean controls (BMI = 17.6 ± 0.6 kg/m2, P < 0.001), aged 10–12 years were recruited. After resting echocardiography, all children performed a maximal exercise test. Regional diastolic and systolic myocardial velocities were acquired at rest and each workload. Stroke volume and cardiac output were calculated. At rest, obese boys had greater left ventricular (LV) diameters and LV mass. Boys in the first degree group showed no diastolic or systolic dysfunction, whereas boys with second degree obesity showed subtle diastolic dysfunction. During exercise, both obese groups showed greater stroke volume and cardiac output. First degree obese boys exhibited greater systolic and diastolic tissue Doppler velocities than controls, whereas second degree obese boys had lower diastolic tissue velocities irrespective of exercise intensity and lower fractional shortening at high exercise intensities than controls. In conclusion, no impairment in diastolic or systolic function is noticed in prepubertal boys with first degree of obesity. Enhanced regional myocardial function response to exercise was also demonstrated in this population, suggesting adaptive compensatory cardiac changes in mild obesity. However, when obesity becomes more severe, impaired global and regional cardiac function at rest and during exercise can be observed.  相似文献   

6.
The aim of this study was to examine the effect of surgical weight reduction on cardiac structure and function and to seek the determinants of these changes. Sixty‐six severely obese adults (BMI ≥35 kg/m2) who received bariatric surgery underwent echocardiographic examination before and 3 months after surgery. At 3 months after surgery, BMI and systolic blood pressure (BP) decreased (43.3 ± 6.3 to 34.1 ± 5.6 kg/m2, P < 0.001, and 146 ± 12 to 130 ± 14 mm Hg, P < 0.001, respectively). In left ventricular (LV) geometry, the relative wall thickness (RWT) and LV mass index decreased significantly (0.43 ± 0.05 to 0.35 ± 0.05, P < 0.001, and 50 ± 11 to 39 ± 11 g/m2.7, P < 0.001, respectively) without changes in chamber size. Multivariate analyses showed change in systolic BP to be an independent predictor for the changes in RWT and LV mass index. In myocardial performance, peak systolic mitral annular velocity and all diastolic indexes showed significant improvements. We concluded that LV hypertrophy and function improved rapidly after bariatric surgery in severely obese adults. BP reduction was the major determinant for the regression of LV hypertrophy in the early stage of surgical weight reduction.  相似文献   

7.
Our aim was to assess the differential effect of waist circumference on left-ventricular (LV) structural and functional alterations, in hypertensive males and females. One thousand seven hundred and eighty nine consecutive, nondiabetic, essential hypertensives (aged 55.8 +/- 13.5 years, 966 females), included in the 3H Study, an ongoing registry of hypertension-related-target-organ damage, were classified to obese and nonobese groups according to Adult Treatment Panel III criteria. All participants underwent complete echocardiographic study including LV diastolic function evaluation by means of conventional and tissue Doppler imaging (TDI) methods, averaging early and late diastolic mitral annular peak velocities (Em, Am, Em/Am) from four separate sites of measurement. Hypertensive obese women compared with nonobese exhibited significantly greater LV mass index and prevalence of LV hypertrophy (by 5.5 g/m(2), P = 0.003, and 8.8%, P = 0.005, respectively), while such differences were not present among men. Obese women compared to nonobese ones were accompanied by lower transmitral E/A (by 0.08, P < 0.001), TDI-derived Em/Am (by 0.12, P < 0.001), and higher E/Em ratio (by 0.8, P = 0.016). In contrast, hypertensive obese men compared to nonobese ones exhibited lower E and Em (by 0.04 m/s and 0.6 cm/s, both P < 0.05). A significant interaction between sex and abdominal obesity was observed only regarding TDI-derived Am and Em/Am. Furthermore, waist circumference was a predictor of E/A (beta = -0.097, P = 0.002) and Em/Am (beta = -0.116, P = 0.001), independently of body size, in females but not in males. The adverse effect of abdominal obesity on LV alterations is more pronounced among female hypertensives, suggesting that routine measurement of waist circumference provides additional information on cardiac phenotype especially in women.  相似文献   

8.
Obesity is considered as a strong risk factor for cardiovascular morbidity and mortality. 3D-wall motion tracking echocardiography (3D-WMT) provides information regarding different parameters of left ventricular (LV) myocardial deformation. Our aim was to assess the presence of early myocardial deformation abnormalities in nonselected obese children free from other cardiovascular risk factors. Thirty consecutive nonselected obese children and 42 healthy volunteer children were enrolled. None of them had any cardiovascular risk factor. Every subject underwent a 2D-echo examination and a 3D-WMT study. Mean age was 13.9 ± 2.56 and 13.25 ± 2.68 years in the nonobese and obese groups, respectively (59.7% and 40.3% male). Statistically significant differences were found for: interventricular septum thickness, LV posterior wall thickness, LV end-diastolic volume, LV end-systolic volume, left atrium volume, LV mass, and lateral annulus peak velocity. Regarding the results obtained by 3D-WMT assessment, all the evaluated parameters were statistically significantly different between the two groups. When the influence of obesity on the different echocardiographic variables was evaluated by means of multivariate logistic regression analysis, the strongest relationship with obesity was found for LV average circumferential strain (β-coefficient: 0.74; r(2): 0.55; P: 0.003). Thus, obesity cardiomyopathy is associated not only with structural cardiac changes, but also with myocardial deformation changes. Furthermore, this association occurs as early as in the childhood and it is independent from any other cardiovascular risk factor. The most related parameter to obesity is LV circumferential strain.  相似文献   

9.
Hypertension and exercise independently induce left ventricular (LV) remodeling and alter LV function. The purpose of this study was to determine systolic and diastolic LV pressure-volume relationships (LV-PV) in spontaneously hypertensive rats (SHR) with and without LV hypertrophy, and to determine whether 6 mo of exercise training modified the LV-PV in SHR. Four-month-old female SHR (n = 20), were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (approximately 60% peak O2 consumption, 5 days/wk, 6 mo), while age-matched female Wistar-Kyoto rats (WKY; n = 13) served as normotensive controls. The LV-PV was determined using a Langendorff isolated heart preparation at 4 (no hypertrophy: WKY, n = 5; SHR, n = 5) and 10 mo of age (hypertrophy: WKY, n = 8; SHR-SED, n = 8; SHR-TRD, n = 7). At 4 mo, the LV-PV in SHR was similar to that observed in WKY controls. However, at 10 mo of age, a rightward shift in the LV-PV occurred in SHR. Exercise training did not alter the extent of the shift in the LV-PV relative to SHR-SED. Relative systolic function, i.e., relative systolic elastance, was approximately 50% lower in SHR than WKY at 10 mo of age (P < 0.05). Doppler-derived LV filling parameters [early wave (E), atrial wave (A), and the E/A ratio] were similar between groups. LV capacitance was increased in SHR at 10 mo (P < 0.05), whereas LV diastolic chamber stiffness was similar between groups at 10 mo. Hypertrophic remodeling at 10 mo of age in female SHR is manifest with relative systolic decompensation and normal LV diastolic function. Exercise training did not alter the LV-PV in SHR.  相似文献   

10.

Background

Myocardial fibrosis has been proposed to play an important pathogenetic role in left ventricular (LV) dysfunction in obesity. This study tested the hypothesis that calibrated integrated backscatter (cIB) as a marker of myocardial fibrosis is altered in obese adolescents and explored its associations with adiposity, LV myocardial deformation, and metabolic parameters.

Methods/Principal Findings

Fifty-two obese adolescents and 38 non-obese controls were studied with conventional and speckle tracking echocardiography. The average cIB of ventricular septum and LV posterior wall was measured. In obese subjects, insulin resistance as estimated by homeostasis model assessment (HOMA-IR) and glucose tolerance were determined. Compared with controls, obese subjects had significantly greater cIB of ventricular septum (-16.8±7.8 dB vs -23.2±7.8 dB, p<0.001), LV posterior wall (-20.5±5.6 dBvs -25.0±5.1 dB, p<0.001) and their average (-18.7±5.7 dB vs -24.1±5.0 dB, p<0.001). For myocardial deformation, obese subjects had significantly reduced LV longitudinal systolic strain rate (SR) (p = 0.045) and early diastolic SR (p = 0.015), and LV circumferential systolic strain (p = 0.008), but greater LV longitudinal late diastolic SR (p<0.001), and radial early (p = 0.037) and late (p = 0.002) diastolic SR than controls. For the entire cohort, myocardial cIB correlated positively with body mass index (r = 0.45, p<0.001) and waist circumference (r = 0.45, p<0.001), but negatively with LV circumferential systolic strain (r = -0.23, p = 0.03) and systolic SR (r = -0.25, p = 0.016). Among obese subjects, cIB tended to correlate with HOMA-IR (r = 0.26, p = 0.07).

Conclusion

Obese adolescents already exhibit evidence of increased myocardial fibrosis, which is associated with measures of adiposity and impaired LV circumferential myocardial deformation.  相似文献   

11.
Objective: Previous studies evaluated the effect of obesity on left ventricular (LV) mass and systolic function in healthy subjects and in patients with coexistent chronic LV pressure overload due to hypertension, but no data exist regarding subjects with underlying volume overload. This study assessed the impact of overweight‐obesity on LV mass and systolic function in patients with coexistent chronic LV volume overload. Research Methods and Procedures: In 885 subjects with degenerative aortic regurgitation, a common cause of LV volume overload, LV mass, ejection fraction, and myocardial contractility were determined by echocardiography. Results: LV mass was greater in overweight (193.5 ± 54.2 g) and further increased in obese subjects (208.4 ± 63.6 g) in comparison with normal‐weight patients (177.7 ± 54.9 g) (p < 0.0001), and these differences were still evident after adjustment for LV workload, gender, and body size. Despite no differences in ejection fraction, LV myocardial contractility was lower in overweight (92.6 ± 14.8%) and obese subjects (91.7 ± 14.4%) than normal‐weight individuals (95.6 ± 16.0%) (p = 0.0058). The magnitudes of these effects were not different from those found in age‐, gender‐, and body size‐matched controls, suggesting additive interaction, rather than synergistic, between overweight‐obesity and the underlying condition of volume overload. Multivariate analysis showed that BMI independently predicted LV mass and that the negative effect on LV myocardial contractility was mediated by LV hypertrophy. Discussion: Overweight and obesity are associated with LV hypertrophy and contractile impairment in patients with underlying chronic LV volume overload.  相似文献   

12.
Obesity, especially when complicated with hypertension, is associated with structural and functional cardiac changes. Recent studies have focused on the prognostic impact of the type of left ventricular (LV) geometric remodeling. This study looked at the prevalence and clinical correlates of LV geometric patterns and their relation to cardiac function in a sample of predominantly African‐American (AA) youth. Echocardiographic data was collected on 213 obese (BMI of 36.53 ± 0.53 kg/m2) and 130 normal‐weight subjects (BMI of 19.73 ± 0.21 kg/m2). The obese subjects had significantly higher LV mass index (LVMI; 49.6 ± 0.9 vs. 46.0 ± 1.0 g/m2.7, P = 0.01), relative wall thickness (RWT; 0.45 ± 0.00 vs. 0.40 ± 0.00, P < 0.001), left atrial (LA) index (33.2 ± 0.7 vs. 23.5 ± 0.6 ml/m, P < 0.001), more abnormal diastolic function by tissue Doppler E/Ea septal (7.5 ± 0.14 vs. 6.5 ± 0.12 ms, P < 0.001), E/Ea lateral (5.7 ± 0.12 vs. 4.8 ± 0.1 ms, P < 0.001), myocardial performance index (MPI; 0.43 ± 0.00 vs. 0.38 ± 0.00, P < 0.001), and Doppler mitral EA ratio (2.0 ± 0.04 vs. 2.4 ± 0.07, P < 0.001) but similar systolic function. Concentric remodeling (CR) was the most prevalent pattern noted in the obese group and concentric hypertrophy (CH) in the obese and hypertensive group. Obesity, hypertension, and CH were independent predictor of diastolic dysfunction. Systolic (SBP) and diastolic blood pressures (DBP) were the prime mediators for CH whereas obesity and diastolic blood pressure were predictors of CR. No significant association was observed between the geometric patterns and systolic function. Tracking LV hypertrophy (LVH) status and geometric adaptations in obesity may be prognostic tools for assessing cardiac risk and therapeutic end points with weight loss.  相似文献   

13.
We characterized the time course of the left ventricular (LV) geometric and functional changes after aortic banding, validated them by necropsy, and investigated the sensitivity of echocardiographic findings on LV hypertrophy. C57BL/6 mice were subjected to transverse aortic constriction (TAC) or sham operation; echocardiographic assessments were performed before or at 2, 4, 6, and 11 wk after surgery; and some of the mice were euthanized at the corresponding time points. There was a progressive increase in diastolic posterior wall thickness and LV systolic dimension; the percentage of LV fractional shortening (LV%FS) decreased progressively at 4 wk, whereas these parameters remained stable in sham-operated mice. Echo LV mass and LV%FS correlated well with actual whole heart mass and ratio of lung weight to body weight, respectively (r = 0.765 and -0.749, respectively; P < 0.0001). These results suggest that the development of myocardial hypertrophy and systolic dysfunction is a time-dependent process. Echocardiographic assessment of myocardial hypertrophy and functional changes correlate well with the actual heart mass and lung mass. Echocardiography is sensitive enough to assess myocardial hypertrophy and heart functional changes induced by pressure overload in mice.  相似文献   

14.
The aim of this study was to evaluate the impact of a low-intensity training program on subclinical cardiac dysfunction and on dyssynchrony in moderately obese middle aged men. Ten obese and 14 age-matched normal-weight men (BMI: 33.6 ± 1.0 and 24.2 ± 0.5 kg/m(2)) were included. Obese men participated in an 8-week low-intensity training program without concomitant diet. Cardiac function and myocardial synchrony were assessed by echocardiography with tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE). At baseline, obese men showed diastolic dysfunction on standard echocardiography, lower strain values (systolic strain: 15.9 ± 0.9 vs. 18.8 ± 0.3%, diastolic strain rate: 0.81 ± 0.09 vs. 1.05 ± 0.06 s(-1)), and significant intraventricular dyssynchrony (systolic: 13.3 ± 2.1 vs. 5.4 ± 2.1 ms, diastolic: 17.4 ± 3.2 vs. 9.1 ± 2.1 ms) (P < 0.05 vs. controls for all variables). Training improved aerobic fitness, decreased systolic blood pressure and heart rate, and reduced fat mass without weight loss. Diastolic function, strain values (systolic strain: 17.4 ± 0.9%, diastolic strain rate: 0.96 ± 0.12 s(-1)) and intraventricular dyssynchrony (systolic: 3.3 ± 1.7 ms, diastolic: 5.5 ± 3.4 ms) improved significantly after training (P < 0.05 vs. baseline values for all variables), reaching levels similar to those of normal-weight men. In conclusion, in obese men, a short and easy-to-perform low intensity training program restored diastolic function and cardiac synchrony and improved body composition without weight loss.  相似文献   

15.
Prolongation of the corrected QT interval (QTc) has been described in obese subjects. This study assesses the relation of left ventricular (LV) mass to QTc in normotensive severely obese subjects. Fifty normotensive patients whose BMI was ≥40 kg/m(2) (mean age: 38 ± 7 years) were studied. QTc was derived using Bazett's formula. LV mass was calculated using the formula of Devereux et al. and was indexed to height(2.7). Mean QTc was 428.8 ± 19.0 ms and was significantly longer in those with than in those without LV hypertrophy (P < 0.01) QTc correlated positively and significantly with BMI (r = 0.392, P < 0.025), LV mass/height(2.7) (r = 0.793, P < 0.0005), systolic blood pressure (r = 0.742, P < 0.001), LV end - systolic wall stress (r = 0.746, P < 0.001) and LV internal dimension in diastole (r = 0.788, P < 0.0005). Among five variables tested, LV mass/height(2.7) was identified as the sole predictor of QTc by multivariate analysis. In conclusion, LV mass and loading conditions that may affect LV mass are important determinants of QTc in normotensive severely obese subjects.  相似文献   

16.

Background

Conventional echocardiography is not sensitive enough to assess left ventricular (LV) dysfunction in hypertrophic cardiomyopathy (HCM) patients. This research attempts to find a new ultrasonic technology to better assess LV diastolic function, systolic function, and myocardial longitudinal and circumferential systolic strain of segments with different thicknesses in HCM patients.

Methods

This study included 50 patients with HCM and 40 healthy subjects as controls. The peak early and late mitral annulus diastolic velocities at six loci (Ea′ and Aa′, respectively) and the Ea′/Aa′ ratio were measured using real-time tri-plane echocardiography and quantitative tissue velocity imaging (RT-3PE-QTVI). The mean value of Ea′ at six loci (Em′) was obtained for the calculation of E/Em′ ratio. The LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV stroke volume (LVSV), and LV ejection fraction (LVEF) were measured using real-time three-dimensional echocardiography (RT-3DE). LV myocardial longitudinal peak systolic strain (LPSS) and circumferential peak systolic strain (CPSS) in the apical-middle-basal segments (LPSS-api, LPSS-mid, LPSS-bas; CPSS-api, CPSS-mid, and CPSS-bas, respectively) were obtained using a software for two-dimensional speckle tracking imaging (2D-STI). According to the different segmental thicknesses (STs) in each HCM patient, the values (LPSS and CPSS) of all the myocardial segments were categorized into three groups and the respective averages were computed.

Results

The Ea′, Aa′, and, Ea′/Aa’ ratio in HCM patients were lower than those in the controls (all p?<?0.001), while the E/Em′ ratio in HCM patients was higher than that in the controls (p?<?0.001). The LVEDV, LVSV, and LVEF were significantly lower in HCM patients than in controls (all p?<?0.001). In HCM patients, the LPSS-api, LPSS-mid, LPSS-bas, CPSS-api, CPSS-mid, and CPSS-bas and the LPSS and CPSS of LV segments with different thicknesses were all significantly reduced (all p?<?0.001).

Conclusions

In HCM patients, myocardial dysfunction was widespread not only in the obviously hypertrophic segments but also in the non-hypertrophic segments; the LV systolic and diastolic functions were damaged, even with a normal LVEF. LV diastolic dysfunction, systolic dysfunction, and myocardial deformation impairment in HCM patients can be sensitively revealed by RT-3PE-QTVI, RT-3DE, and 2D-STI.
  相似文献   

17.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

18.
Left ventricular (LV) diastolic dysfunction, particularly relaxation abnormalities, are known to be associated with the development of LV hypertrophy (LVH). Preliminary human and animal studies suggested that early LV diastolic dysfunction may be revealed independently of LVH. However, whether LV diastolic dysfunction is compromised before the onset of hypertension and LVH remains unknown. We therefore evaluated LV diastolic function in spontaneously hypertensive rats (SHR) at different ages and tested whether LV diastolic dysfunction is associated with abnormal intracellular calcium homeostasis. LV systolic and diastolic functions were evaluated by invasive and echocardiographic methods in 3-week-old (without hypertension) and 5-week-old (with hypertension) SHR and Wistar-Kyoto control rats. Basal intracytoplasmic calcium and sarcoplasmic reticulum (SR) Ca(2+) contents were measured in cardiomyocytes using fura-2 AM. Sarco(endo)plasmic Ca(2+)-ATPase isoform 2a (SERCA 2a) and phospholamban (PLB) expressions were quantified by Western blot and quantitative RT-PCR techniques. LV relaxation dysfunction was observed in 3-week-old SHR rats before onset of hypertension and LVH. An increase in basal intracytoplasmic Ca(2+) and a decrease in SR Ca(2+) release were demonstrated in SHR. Decreased expression of SERCA 2a and Ser16 PLB (p16-PLB) protein levels was also observed in SHR rats, whereas mRNA expression was not decreased. For the first time, we have shown that LV myocardial dysfunction precedes hypertension in 3-week-old SHR rats. This LV myocardial dysfunction was associated with high diastolic [Ca(2+)](i) possibly due to decreased SERCA 2a and p16-PLB protein levels. Diastolic dysfunction may be a potential predictive marker of arterial hypertension in genetic hypertension syndromes.  相似文献   

19.
ObjectiveCoronary slow-flow phenomenon (CSFP) is an angiographic diagnosis characterised by a low rate of flow of contrast agent in the normal or near-normal epicardial coronary arteries. Many of the patients with CSFP may experience recurrent acute coronary syndromes. However, current clinical practice tends to underestimate the impact of CSFP due to the yet unknown effect on the cardiac function. This study was performed to evaluate left ventricular (LV) and right ventricular (RV) diastolic and systolic functions, using two-dimensional (2D) longitudinal strain and strain rate, in patients with CSFP, and to determine the relationships between the thrombolysis in myocardial infarction (TIMI) frame count (TFC) and LV and RV diastolic and systolic functions.MethodsSixty-three patients with CSFP and 45 age- and sex-matched controls without CSFP were enrolled in the study. Diagnosis of CSFP was made by TFC. LV and RV diastolic and systolic functions were assessed by 2D speckle-tracking echocardiography.ResultsLV peak early diastolic longitudinal strain rate (LSRe) was lower in patients with CSFP than in controls (P = 0.01). LV peak systolic longitudinal strain (LS) and LV peak systolic longitudinal strain rate (LSRs) were lower in patients with CSFP than in controls (P = 0.004 and P = 0.03, respectively). There was no difference in LV ejection fraction. RV peak early diastolic longitudinal strain rate (RSRe) was lower in patients with CSFP than in controls (P = 0.03). There were no differences in RV peak systolic longitudinal strain (RS), RV peak systolic longitudinal strain rate (RSRs), or RV fractional area change among the groups. The mean TFC correlated negatively with LSRe and RSRe in patients with CSFP (r = −0.26, P = 0.04 and r = −0.32, P = 0.01, respectively).ConclusionsLV diastolic and systolic functions were impaired in patients with CSFP. CSFP also affected RV diastolic function, but not RV systolic function.  相似文献   

20.
Insulin sensitivity is impaired and ectopic fat (accretion of lipids outside of typical adipose tissue depots) increased in obese adults and adolescents. It is unknown how early in life this occurs; thus, it is important to evaluate young children to identify potential factors leading to the development of metabolic syndrome. We examined an ethnically diverse cohort of healthy, exclusively prepubertal children (N = 123; F = 57, M = 66; age 8.04 ± 0.77 years) to examine differences in insulin sensitivity and ectopic and visceral fat deposition between obese and nonobese youth. Obesity was categorized by age- and sex-adjusted BMI z-scores (nonobese = z-score <2 (N = 94) and obese = z-score ≥2 (N = 29)). Insulin sensitivity was assessed by both a frequently sampled intravenous glucose tolerance test (S(i)) and the homeostatic model assessment of insulin resistance (HOMA(IR)). Intramyocellular lipids (IMCLs) from soleus and intrahepatic lipids (IHLs) were assessed by magnetic resonance spectroscopy, visceral adipose tissue (VAT) by magnetic resonance imaging, and total body fat by dual-energy X-ray absorptiometry. We also examined serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol) and blood pressure (diastolic and systolic). Obese children exhibited significantly lower S(i) (5.9 ± 5.98 vs. 13.43 ± 8.18 (mμ/l)(-1)·min(-1), P = 0.01) and HDL-C and higher HOMA(IR) (1.68 ± 1.49 vs. 0.63 ± 0.47, P < 0.0001), IMCL (0.74 ± 0.39 vs. 0.44 ± 0.21% water peak, P < 0.0001), IHL (1.49 ± 1.13 vs. 0.54 ± 0.42% water peak, P < 0.0001), VAT (20.16 ± 8.01 vs. 10.62 ± 5.44 cm(2), P < 0.0001), total cholesterol, triglycerides, low-density lipoprotein cholesterol, and systolic blood pressure relative to nonobese children. These results confirm significantly increased ectopic fat and insulin resistance in healthy obese vs. nonobese children prior to puberty. Excessive adiposity during early development appears concomitant with precursors of type 2 diabetes and the metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号