首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While studying the effect of structure on satiety, effects of mode of consumption, additional water to drink, and thirst have been neglected. The objective was to assess effects of structure, mode of consumption of food, and additional drinking of water on fullness and thirst. In study 1, 20 subjects (BMI 22.5 ± 0.5 kg/m(2); age 21.4 ± 3 years) underwent consumption conditions; SEW: solids to eat + 750 ml water to drink; LEW: liquefied soup to eat including 500 ml water + 250 ml water separately to drink; LDW: the same as LEW but served as drinks; SE, LE, and LD: the same as previous but without water to drink. In study 2, a subset of subjects underwent consumption conditions: solid carbohydrate, solid protein, solid fat: the same as SEW, but for each macronutrient separately; liquefied carbohydrate, liquefied protein, liquefied fat: the same as LEW, but for each macronutrient separately. Appetite, insulin concentration, glucose concentration, and ghrelin concentration were measured. Eating, independent of structure, suppressed desire to eat more than drinking (P < 0.01). Drinking water separately vs. water consumption in the food suppressed thirst more (P < 0.001). Regarding protein, satiety was higher in the solid vs. liquefied condition, while blood parameters were not significantly different. Only after drinking a meal most subjects (80%) wanted to consume more of the same meal, in order to alleviate hunger (63%) or quench thirst (37%). We conclude that mode of consumption plays a role in alleviating hunger and thirst. Subjects required further consumption after drinking the meal, motivated by hunger or thirst, showing that drinking a meal causes confusion that may imply a risk of overconsumption.  相似文献   

2.
Consumption of meals with different macronutrient contents, especially high in carbohydrates, may influence the stress-induced physiological and psychological response. The objective of this study was to investigate effects of consumption of a high-protein vs. high-carbohydrate meal on the physiological cortisol response and psychological mood response. Subjects (n = 38, 19 m/19f, age =25 ± 9 yrs, BMI = 25.0 ± 3.3 kg/m2) came to the university four times, fasted, for either condition: rest-protein, stress-protein, rest-carbohydrate, stress-carbohydrate (randomized cross-over design). Stress was induced by means of a psychological computer-test. The test-meal was either a high-protein meal (En% P/C/F 65/5/30) or a high-carbohydrate meal (En% P/C/F 6/64/30), both meals were matched for energy density (4 kJ/g) and daily energy requirements (30%). Per test-session salivary cortisol levels, appetite profile, mood state and level of anxiety were measured. High hunger, low satiety (81 ± 16, 12 ± 15 mm VAS) confirmed the fasted state. The stress condition was confirmed by increased feelings of depression, tension, anger, anxiety (AUC stress vs. rest p < 0.02). Consumption of the high-protein vs. high-carbohydrate meal did not affect feelings of depression, tension, anger, anxiety. Cortisol levels did not differ between the four test-sessions in men and women (AUC nmol·min/L p > 0.1). Consumption of the test-meals increased cortisol levels in men in all conditions (p < 0.01), and in women in the rest-protein and stress-protein condition (p < 0.03). Men showed higher cortisol levels than women (AUC nmol·min/L p < 0.0001). Consumption of meals with different macronutrient contents, i.e. high-protein vs. high-carbohydrate, does not influence the physiological and psychological response differentially. Men show a higher meal-induced salivary cortisol response compared with women.  相似文献   

3.

Background

Differences in satiating capacity of liquid and solid meals are unclear.

Objective

Investigating appetite parameters, physiological measurements and within-subject relationships after consumption of a single macronutrient, subject-specific carbohydrate meal in liquefied versus solid form, controlled for energy density, weight and volume.

Design

In a cross-over design, ten male subjects (age = 21.1±3.9 y, BMI = 22.4±1.2 kg/m2) consumed a solid (CS, whole peaches +750 ml water) and liquefied carbohydrate (CL, peach blended in 500 ml water +250 ml water) lunch. Appetite profiles, insulin-, glucose- and ghrelin concentrations were measured over three hours. Post-prandial relationships between appetite and blood parameters were calculated using subject-specific regression analyses.

Results

Fullness ratings were higher in the CL (85±5 mm) compared to the CS condition (73±8 mm) at 20 min (p<0.03). Glucose concentrations peaked 20 to 30 min after the start of the lunch in the CL condition, and 30 to 40 min after start of the CS condition. Correspondingly, insulin concentrations were peaked at 20–30 min in the CL condition, and at 30–40 min in the CS condition. AUC or condition x time interactions were not different comparing the CL and the CS condition. Insulin was significantly higher in the CS compared to the CL condition 40 min after the start of the lunch (p<0.05). Fullness scores were significantly related to insulin concentrations but not to glucose concentrations; desire to eat scores were significantly associated with ghrelin concentrations in both, the CL and the CS condition. The relationship between fullness scores and glucose concentrations was not statistically significant.

Conclusion

Liquefied and solid carbohydrate meals do not differ in satiating capacity, supported by appetite profile and relevant blood parameters. Postprandially, fullness and desire to eat were associated with respectively insulin and ghrelin concentrations.  相似文献   

4.
The reason for high altitude anorexia is unclear but could involve alterations in the appetite hormones ghrelin and peptide YY (PYY). This study examined the effect of resting and exercising in hypoxia (12.7% O(2); ~4,000 m) on appetite, energy intake, and plasma concentrations of acylated ghrelin and PYY. Ten healthy males completed four, 7-h trials in an environmental chamber in a random order. The four trials were control-normoxia, control-hypoxia, exercise-normoxia, and exercise-hypoxia. During exercise trials, participants ran for 60 min at 70% of altitude-specific maximal oxygen consumption (Vo(2max)) and then rested. Participants rested throughout control trials. A standardized meal was consumed at 2 h and an ad libitum buffet meal at 5.5 h. Area under the curve values for hunger (assessed using visual analog scales) tended to be lower during hypoxic trials than normoxic trials (repeated-measures ANOVA, P = 0.07). Ad libitum energy intake was lower (P = 0.001) in hypoxia (5,291 ± 2,189 kJ) than normoxia (7,718 ± 2,356 kJ; means ± SD). Mean plasma acylated ghrelin concentrations were lower in hypoxia than normoxia (82 ± 66 vs. 100 ± 69 pg/ml; P = 0.005) while PYY concentrations tended to be higher in normoxia (32 ± 4 vs. 30 ± 3 pmol/l; P = 0.059). Exercise suppressed hunger and acylated ghrelin and increased PYY but did not influence ad libitum energy intake. These findings confirm that hypoxia suppresses hunger and food intake. Further research is required to determine if decreased concentrations of acylated ghrelin orchestrate this suppression.  相似文献   

5.
6.
Food anticipatory activity (FAA) is displayed in rats when access to food is restricted to a specific time frame of their circadian phase, a behavior thought to reflect both hunger and the motivation to eat. Rats also display FAA in a feeding schedule with ad libitum access to normal chow, but limited availability of a palatable meal, which is thought to involve mainly motivational aspects. The orexigenic hormone ghrelin has been implicated in FAA in rodents with restricted access to chow. Because ghrelin plays an important role not only in the control of food intake, but also in reward, we sought to determine the role of ghrelin in anticipation to a palatable meal. Plasma ghrelin levels of non-restricted rats that anticipated chocolate correlated positively with FAA and were increased compared with chow-fed control rats. Furthermore, centrally injected ghrelin increased, whereas an antagonist of the ghrelin receptor decreased, the anticipation to chocolate. Therefore, we hypothesize that central ghrelin signaling is able to mediate the motivational drive to eat.  相似文献   

7.
Data are limited concerning the dietary factors that influence appetite control in older adults. This study examined the effects of food form and portion size on appetite in 43 older adults (age: 72 ± 1 years; BMI: 25.6 ± 0.3 kg/m2). Subjects were assigned to groups based on portion size of the test meal (12.5% (n = 18) vs. 25% (n = 25) of estimated energy need). Subjects randomly consumed, on two separate days, the respective solid or beverage test meal. Appetite sensations and hormonal responses were measured over 4 h. Main effects of food form (P < 0.05) and/or portion size (P < 0.05) were observed for each appetite sensation. Postprandial hunger and desire to eat were greater following beverage vs. solid meal (between 12.5% vs. 25%), whereas fullness was lower after beverage vs. solid meal (P < 0.05). Main effects of food form and/or portion size were observed for glucose, insulin, and ghrelin. Postprandial glucose and insulin concentrations were lower after beverage vs. solid meal (between 12.5% vs. 25%; all comparisons, P < 0.05) whereas beverage meal led to greater 4‐h ghrelin vs. solid meal (P = 0.09). No main effects were observed for glucagon‐like peptide‐1 (GLP‐1) or cholecystokinin (CCK). When adjusting for age, food form remained significant for postprandial hunger and fullness; portion size remained significant for postprandial glucose. Greater hunger and reduced satiety with accompanying glucose, insulin, and ghrelin following the beverage vs. solid meals, and to some extent, in smaller vs. larger portions suggest that appetite control is influenced by food form and portion size in older adults. These findings may enhance the development of appropriate dietary strategies that help to regulate energy balance.  相似文献   

8.
Summary A basic procedure was developed to produce high-protein amaranth flour (HPAF) using a commercial preparation of heat-stable alpha-amylase. Slurries (20%, w/v) of gelatinized whole flour were liquefied at 70 and 90°C, pH 6.5, 0.1% (w/v) enzyme concentration and 30 min hydrolysis time. Protein content of raw flour was increased from 15 to 29.6 or 39.3% at liquefaction temperatures of 70 or 90°C, respectively. Some physicochemical and functional properties of HPAF were assessed. HPAF might be used as a dry milk extender.  相似文献   

9.
Ghrelin is an orexigenic hormone secreted from endocrine cells in the stomach and other tissues. Acylation of ghrelin is essential for appetite regulation. Vigorous exercise induces appetite suppression, but this does not appear to be related to suppressed concentrations of total ghrelin. This study examined the effect of exercise and feeding on plasma acylated ghrelin and appetite. Nine male subjects aged 19-25 yr participated in two, 9-h trials (exercise and control) in a random crossover design. Trials began at 0800 in the morning after an overnight fast. In the exercise trial, subjects ran for 60 min at 72% of maximum oxygen uptake between 0800 and 0900. After this, they rested for 8 h and consumed a test meal at 1100. In the control trial, subjects rested for 9 h and consumed a test meal at 1100. Area under the curve values for plasma acylated ghrelin concentration (assessed from venous blood samples) were lower over the first 3 h and the full 9 h of the exercise trial compared with the control trial: 317+/-135 vs. 510+/-186 pg.ml(-1).3 h and 917+/-342 vs. 1,401+/-521 pg.ml(-1).9 h (means+/-SE) respectively (P<0.05). Area under the curve values for hunger (assessed using a visual scale) were lower over the first 3 h of the exercise trial compared with the control trial (P=0.013). These findings demonstrate that plasma acylated ghrelin concentration and hunger are suppressed during running.  相似文献   

10.

Objective:

Consuming smaller, more frequent meals is often advocated as a means of controlling body weight, but studies demonstrating a mechanistic effect of this practice on factors associated with body weight regulation are lacking. The purpose of this study was to compare the effect of consuming three (3M) vs. six meals (6M) per day on 24‐h fat oxidation and subjective ratings of hunger.

Design and Methods:

Lean (body mass index <25 kg/m2) subjects (7M, 8F) were studied in a whole‐room calorimeter on two occasions in a randomized cross‐over design. Subjects were provided isoenergetic, energy balanced diets with a 1‐ to 2‐week washout between conditions. Hunger, fullness, and “desire to eat” ratings were assessed throughout the day using visual analog scales and quantified as area under the curve (AUC).

Results:

There were no differences (P < 0.05) in 24‐h energy expenditure (8.7 ± 0.3 vs. 8.6 ± 0.3 mj d?1), 24‐h respiratory quotient (0.85 ± 0.01 vs. 0.85 ± 0.01), or 24‐h fat oxidation (82 ± 6 vs. 80 ± 7 g day‐1) between 3M and 6M, respectively. There was no difference in fullness 24‐h AUC, but hunger AUC (41850 ± 2255 vs. 36612 ± 2556 mm.24 h, P = 0.03) and “desire to eat” AUC (47061 ± 1791 vs. 41170 ± 2574 mm.24 h, P = 0.03) were greater during 6M than 3M.

Conclusion:

We conclude that increasing meal frequency from three to six per day has no significant effect on 24‐h fat oxidation, but may increase hunger and the desire to eat.
  相似文献   

11.
CCK mediates the effects of nutrients on gastrointestinal motility and appetite. Intravenously administered CCK stimulates pyloric pressures, increases plasma PYY, and suppresses ghrelin, all of which may be important in the regulation of appetite and energy intake. The dose-related effects of exogenous CCK on gastrointestinal motility and gut hormone release, and the relationships between these effects and those on energy intake, are uncertain. We hypothesized that 1) intravenous CCK-8 would have dose-dependent effects on antropyloroduodenal (APD) pressures, plasma PYY and ghrelin concentrations, appetite, and energy intake and 2) the suppression of energy intake by CCK-8 would be related to the stimulation of pyloric motility. Ten healthy men (age 26 +/- 2 yr) were studied on four separate occasions in double-blind, randomized fashion. APD pressures, plasma PYY and ghrelin, and appetite were measured during 120-min intravenous infusions of 1) saline ("control") or 2) CCK-8 at 0.33 ("CCK0.33"), 3) 0.66 ("CCK0.66"), or 4) 2.0 ("CCK2.0") ng.kg(-1).min(-1). After 90 min, energy intake at a buffet meal was quantified. CCK-8 dose-dependently stimulated phasic and tonic pyloric pressures and plasma PYY concentrations (r > 0.70, P < 0.05) and reduced desire to eat and energy intake (r > -0.60, P < 0.05) without inducing nausea. There were relationships between basal pyloric pressure and isolated pyloric pressure waves (IPPW) with plasma CCK (r > 0.50, P < 0.01) and between energy intake with IPPW (r = -0.70, P < 0.05). Therefore, our study demonstrates that exogenous CCK-8 has dose-related effects on APD motility, plasma PYY, desire to eat, and energy intake and suggests that the suppression of energy intake is related to the stimulation of IPPW.  相似文献   

12.
Little is known about binge eating (BE) in adolescents. The primary aim of the present study was to examine the relationship between BE and weight loss in adolescents (BMI ≥95th percentile) enrolled in a randomized controlled trial of behavioral and pharmacologic treatment of obesity. Participants were 82 treatment-seeking adolescents (BMI = 37.9 ± 3.8 kg/m(2); age = 14.1 ± 1.2 years; 67% females; 42% African American, 55% white). Participants completed the Children's Depression Inventory (CDI), the Piers Harris Self-Esteem Questionnaire, and the Eating Inventory (including cognitive restraint, disinhibition, and hunger scales). BE was assessed by a questionnaire and a confirmatory interview. At baseline, 24% of participants met criteria for BE (N = 13 met full BE disorder (BED) criteria; N = 7 met subthreshold BE). There were no significant differences in percentage reduction in initial BMI between participants with or without BE at month 6 (-7.0 ± 1.6 vs. -6.9 ± 0.9%) or month 12 (-8.8 ± 2.4 vs. -8.3 ± 1.3%) (omnibus main effect BE P = 0.89, interaction BE × time P = 0.84, interaction BE × drug P = 0.61). The rate of BE declined significantly over time from 24% (n = 20) at baseline to 8% (n = 6) at month 6 and 3% (n = 2) at month 12 (P = 0.003). There were significant decreases in hunger and disinhibition as well as an increase in cognitive restraint over time (all P ≤ 0.0001). Findings suggest a combination of behavioral and pharmacologic therapy may produce both weight loss and improvement in BE.  相似文献   

13.
While protein is regarded as the most satiating macronutrient, many studies have employed test meals that had very high and unsustainable protein contents. Furthermore, the comparative responses between lean and obese subjects and the relationships between energy intake suppression and gut hormone release remain unclear. We evaluated the acute effects of meals with modest variations in 1) fat, protein, and carbohydrate content and 2) protein load on gastrointestinal hormones, appetite, and subsequent energy intake in lean and obese subjects. Sixteen lean and sixteen obese men were studied on four occasions. Following a standardized breakfast, they received for lunch: 1) high-fat (HF), 2) high-protein (HP), 3) high-carbohydrate/low-protein (HC/LP), or 4) adequate-protein (AP) isocaloric test meals. Hunger, fullness, and gut hormones were measured throughout, and at t = 180 min energy intake at a buffet meal was quantified. In lean subjects, hunger was less and fullness greater following HF, HP, and AP compared with HC/LP meals, and energy intake was less following HF and HP compared with HC meals (P < 0.05). In the obese subjects, hunger was less following HP compared with HF, HC/LP, and AP meals, and energy intake was less following HP and AP compared with HF and HC meals (P < 0.05). There were no major differences in hormone responses to the meals among subject groups, but the CCK and ghrelin responses to HP and AP were sustained in both groups. In conclusion, HP meals suppress energy intake in lean and obese subjects, an effect potentially mediated by CCK and ghrelin, while obese individuals appear to be less sensitive to the satiating effects of fat.  相似文献   

14.
Ghrelin is reportedly a meal-initiation signal based on observations that concentrations increase before meals coincident with rising hunger. However, evidence that ghrelin peaks vary with feeding schedules suggests that it rises in anticipation of an expected meal, rather than eliciting feeding. To explore the entrainment of ghrelin profiles, this study investigated the association between varying habitual meal patterns and plasma ghrelin concentrations. Lean and obese adults following either a short intermeal interval (SII) pattern, with 2.5-3.5 h between their habitual breakfast and lunch times, or a long intermeal interval (LII) pattern, with 5.5-6.5 h between these eating occasions, participated. Food intake and appetite were recorded for 2 baseline days. On the subsequent test day, blood samples were collected over 8 h while participants ate a breakfast and lunch matched to their customary meals and pattern. Appetite ratings were obtained and ghrelin, insulin, glucose, and leptin concentrations were measured. Peak ghrelin concentrations differed significantly by group and occurred prior to each group's respective lunch time. Ghrelin concentrations directly correlated with subjective hunger. This association was stronger when hunger preceded ghrelin, a pattern inconsistent with ghrelin causing the hunger rise. Ghrelin concentrations were inversely correlated with insulin, and peak insulin concentrations preceded nadir ghrelin concentrations postprandially. Ghrelin concentrations periprandially, and over the entire test session, did not differ by meal group, likely because of similar intakes between groups. These data demonstrate that the timing of ghrelin peaks is related to habitual meal patterns and may rise in anticipation of eating rather than eliciting feeding.  相似文献   

15.
Sexual dimorphism of GH secretion is unclear in humans. There is evidence that oral glucose (OG) administration initially decreases and subsequently stimulates GH secretion. Our aim was to study fasting GH concentrations and their response to OG administration in obese and healthy women and men, in order to elucidate the mechanism of sexual dimorphism of GH secretion and the possible contribution of ghrelin. We selected 33 women and 11 men as obese and healthy subjects. After an overnight fast, 75 g of oral glucose were administered; glucose, insulin, ghrelin, and PYY1-36 were obtained at baseline and during 300 min. Fasting GH (μg/l) was higher in women than men; 1.3 ± 0.3 vs. 0.2 ± 0.1, p=0.009, for women and men, respectively. The area under the curve between 0 and 150 min (AUC) of GH (μg/l · min) was higher in women than men; 98.2 ± 25.9 vs. 41.5 ± 28.6, p=0.002, for women and men, respectively. The AUC of total ghrelin (pg/ml · min, mean ± SEM) between 0 and 150 min was borderline and significantly higher in women than men; 128 562.3 ± 8 335.9 vs. 98 839.1 ± 7 668.6, p=0.069, for women and men, respectively. Several initial time points were higher in women than men. Glucose, insulin, and PYY1-36 were similar in women and men after OG. There were significant correlations between indices of post-oral glucose GH and ghrelin secretion. Fasting and initial GH secretion is higher in women than men, in contrast to peak and late GH secretion, which is similar in both cases. Sexual dimorphism in the regulation of GH secretion probably involves ghrelin.  相似文献   

16.
Renin expression in principal cells of collecting ducts (CD) is upregulated in angiotensin II (ANG II)-dependent hypertensive rats; however, it remains unclear whether increased CD-derived renin undergoes tubular secretion. Accordingly, urinary levels of renin (uRen), angiotensinogen (uAGT), and ANG II (uANG II) were measured in chronic ANG II-infused Sprague-Dawley rats (80 ng/min for 14 days, n = 10) and sham-operated rats (n = 10). Systolic blood pressure increased in the ANG II rats by day 5 and continued to increase throughout the study (day 13; ANG II: 175 ± 10 vs. sham: 116 ± 2 mmHg; P < 0.05). ANG II infusion increased renal cortical and medullary ANG II levels (cortical ANG II: 606 ± 72 vs. 247 ± 43 fmol/g; P < 0.05; medullary ANG II: 2,066 ± 116 vs. 646 ± 36 fmol/g; P < 0.05). Although plasma renin activity (PRA) was suppressed in the ANG II-infused rats (0.3 ± 0.2 vs. 5.5 ± 1.8 ng ANG I·ml(-1)·h(-1); P < 0.05), renin content in renal medulla was increased (12,605 ± 1,343 vs. 7,956 ± 765 ng ANG I·h(-1)·mg(-1); P < 0.05). Excretion of uAGT and uANG II increased in the ANG II rats [uAGT: 1,107 ± 106 vs. 60 ± 26 ng/day; P < 0.0001; uANG II: 3,813 ± 431 vs. 2,080 ± 361 fmol/day; P < 0.05]. By day 13, despite suppression of PRA, urinary prorenin content increased in ANG II rats [15.7 ± 3 vs. 2.6 ± 1 × 10(-3) enzyme units excreted (EUE)/day, P < 0.01] as was the excretion rate of renin (8.6 ± 2 × 10(-6) EUE/day) compared with sham (2.8 ± 1 × 10(-6) EUE/day; P < 0.05). Urinary renin and prorenin protein levels examined by Western blot were augmented ~10-fold in the ANG II-infused rats. Concomitant AT(1) receptor blockade with candesartan prevented the increase. Thus, in ANG II-dependent hypertensive rats with marked PRA suppression, increased urinary levels of renin and prorenin reflect their augmented secretion by CD cells into the luminal fluid. The greater availability of renin and AGT in the urine reflects the capability for intratubular ANG II formation which stimulates sodium reabsorption in distal nephron segments.  相似文献   

17.
The extent and time course of suppression of endogenous glucose production (EGP) in type 2 diabetes after a mixed meal have been determined using a new tracer methodology. Groups of age-, sex-, and weight-matched normal controls (n = 8) and diet-controlled type 2 diabetic subjects (n = 8) were studied after ingesting a standard mixed meal (550 kcal; 67% carbohydrate, 19% fat, 14% protein). There was an early insulin increment in both groups such that, by 20 min, plasma insulin levels were 266 +/- 54 and 190 +/- 53 pmol/l, respectively. EGP was similar basally [2.55 +/- 0.12 mg x kg(-1) x min(-1) in control subjects vs. 2.92 +/- 0.16 mg x kg(-1) x min(-1) in the patients (P = 0.09)]. After glucose ingestion, EGP declined rapidly in both groups to approximately 50% of basal within 30 min of the meal. Despite the initial rapid decrease, the EGP was significantly greater in the diabetic group at 60 min (1.75 +/- 0.12 vs. 1.05 +/- 0.14 mg x kg(-1) x min(-1); P < 0.01) and did not reach nadir until 210 min (0.96 +/- 0.17 mg x kg(-1) x min(-1)). Between 60 and 240 min, EGP was 47% higher in the diabetic group (0.89 +/- 0.09 vs. 1.31 +/- 0.13 mg x kg(-1) x min(-1), P < 0.02). These data quantitate the initial rapid suppression of EGP after a mixed meal in type 2 diabetes and the contribution of continuing excess glucose production to subsequent hyperglycemia.  相似文献   

18.
Ghrelin is the only peripheral orexigenic peptide of gastrointestinal origin. Its preprandial increase is supposed to initiate food intake. This assumption is based on studies with intravenously infused ghrelin in rather high doses and the correlation between ghrelin levels and hunger sensations. As yet it is unclear whether or not low dose ghrelin resulting in physiological and moderately supraphysiological plasma levels has an effect on hunger sensations, the wish for food intake and / or the quantity of the meal consumed. We examined 20 normal-weight males (age 25±1.7 years, BMI 24±0.5 kg/m(2)) in a prospective double-blind randomized fashion. On two different days they obtained a ghrelin infusion 1 ng/kg/min or intravenous saline starting one hour after a standardized meal. Hunger and satiety ratings were documented by visual analogue scales. A second meal was served on demand and consumed until feeling satiated. Time point of the second meal as well as ingested calories were registered. Prior to the start of i.v. ghrelin the postprandial decrease of active plasma ghrelin by 30 pg/ml was comparable. In the controls the postprandial reduction was significant until 210 min compared to basal. With i.v. ghrelin basal levels were reached within 10 min. The maximal rise was twice basal. No effect was observed on hunger and satiety ratings. The time period between the meals and the food quantity of the second meal were similar. During ghrelin infusion glucose and growth hormone but not insulin and cortisol levels were significantly higher after the second meal compared to saline. The present data demonstrate for the first time the effect of a low dose ghrelin infusion on food intake. Neither physiological nor moderably supraphysiological ghrelin levels were associated with any change of the various food intake parameters determined. These data do not favour a hormonal role of peripheral ghrelin in the regulation of food intake.  相似文献   

19.
Cholecystokinin (CCK) interacts with neural signals to induce satiety in several species, but the mechanisms are unclear. We therefore tested the hypothesis that alimentary CCK (CCK-A) receptors mediate the interaction of CCK with an appetizer on food intake in humans. CCK octapeptide (CCK-8, 0.75 microgram infused over 10 min) or saline (placebo) with concomitant infusions of saline (placebo) or loxiglumide, a specific CCK-A antagonist, was infused into 16 healthy men with use of a double-blind, four-period design. All subjects received a standard 400-ml appetizer (amounting to 154 kcal) but were free to eat and drink thereafter as much as they wished. The effect of these infusions on feelings of hunger and satiety and on food intake was quantified. CCK-8 induced a reduction in calorie intake (P < 0.05) compared with saline. Furthermore, a decrease in hunger feelings (P < 0.05, saline-CCK-8 vs. all other treatments) and an increase in fullness were observed. These effects were antagonized for hunger and fullness by loxiglumide. We conclude that CCK-8 interacts with an appetizer to modulate satiety in humans. These effects are mediated by CCK-A receptors.  相似文献   

20.
Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ~12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min(-1)·kg(-1), P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min(-1)·kg(-1) in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min(-1)·kg(-1) in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min(-1)·kg(-1) in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg(-1)·min(-1), P < 0.05). The glucose-O(2) quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r(2) = 0.38, P < 0.05), cortisol (r(2) = 0.31, P < 0.05), and NE (r(2) = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号