首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis.  相似文献   

3.
4.
The resistance of Japanese flounder (Paralichthys olivaceus Temminck et Schlegel) against a viral haemorrhagic septicaemia virus (VHSV) challenge induced by a preceding non-lethal aquabirnavirus (ABV) challenge was investigated through experimental dual-infections with different intervals between the two challenges. The non-specific protection conferred by the primary ABV infection against the secondary VHSV infection commenced at Day 3 and persisted up to Day 14 but vanished at Day 21 post-ABV challenge. The in vitro assay using HINAE (hirame natural embryo) cells demonstrated anti-VHSV activity in the serum of ABV-challenged flounder from Day 1 to Day 14 but not at Day 21 post-ABV challenge. A high expression of a Mx gene, a molecular marker of type I interferon(s) (IFN) occurred in the head kidneys of ABV-challenged flounder from Day 1 to Day 7. These results suggest that the non-specific protection against the secondary VHSV infection in flounder was due to IFN(s) induced by the primary ABV infection.  相似文献   

5.
ISG15 is one of the most strongly induced genes upon viral infection, interferon (IFN) stimulation, and lipopolysaccharide (LPS) stimulation, and only one copy has been found in mammals so far. Here two fish ISG15 genes, termed CaISG15-1 and CaISG15-2, have been cloned and sequenced from UV-inactivated GCHV (grass carp haemorrhagic virus)-infected and IFN-produced CAB cells (crucian carp Carassius auratus blastulae embryonic cells) by suppression subtractive hybridization. The full-length cDNA sequences of two crucian carp ISG15 encode a 155-amino-acid protein and a 161-amino-acid protein, both of which show 78.9% identity overall and possess the characteristic structures of mammalian ISG15 proteins including two tandem ubiquitin-like domains and the C-terminal canonical LRLRGG motif. In CAB cells treated with different stimuli including active virus, UV-inactivated GCHV and IFN containing supernatant (ICS), the expression of both CaISG15-1 and CaISG15-2 was upregulated but displayed different kinetics. Poly I:C and LPS were also able to induce an increase in mRNA for both genes. In CAB cells responsive to active GCHV, UV-inactivated GCHV, CAB ICS, Poly I:C and LPS, CaISG15-1 was upregulated more significantly than CaISG15-2. These results suggest that there are two ISG15 homologues in crucian carp, both of which might play distinct roles in innate immunity against viral and bacterial infection.  相似文献   

6.
Zhu R  Zhang YB  Zhang QY  Gui JF 《Journal of virology》2008,82(14):6889-6901
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2alpha. The interaction between PoPKR and eIF2alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.  相似文献   

7.
8.
Type I interferons (alpha/beta interferons [IFN-α/β]) are the main innate cytokines that are able to induce a cellular antiviral state, thereby limiting viral replication and disease pathology. Plasmacytoid dendritic cells (pDCs) play a crucial role in the control of viral infections, especially in response to viruses that have evolved mechanisms to block the type I IFN signal transduction pathway. Using density gradient separation and cell sorting, we have highly enriched a population of bovine cells capable of producing high levels of biologically active type I IFN. These cells represented less than 0.1% of the total lymphocyte population in blood, pseudoafferent lymph, and lymph nodes. Phenotypic analysis identified these cells as bovine pDCs (CD3(-) CD14(-) CD21(-) CD11c(-) NK(-) TCRδ(-) CD4(+) MHC II(+) CD45RB(+) CD172a(+) CD32(+)). High levels of type I IFN were generated by these cells in vitro in response to Toll-like receptor 9 (TLR-9) agonist CpG and foot-and-mouth disease virus (FMDV) immune complexes. In contrast, immune complexes formed with UV-inactivated FMDV or FMDV empty capsids failed to elicit a type I IFN response. Depletion of CD4 cells in vivo resulted in levels of type I IFN in serum early during FMDV infection that were significantly lower than those for control animals. In conclusion, pDCs interacting with immune-complexed virus are the major source of type I interferon production during acute FMDV infection in cattle.  相似文献   

9.
Bachand F  Silver PA 《The EMBO journal》2004,23(13):2641-2650
The mammalian protein arginine methyltransferase 3 (PRMT3) catalyzes the formation of asymmetric (type I) dimethylarginine in vitro. As yet, natural substrates and cellular pathways modulated by PRMT3 remain unknown. Here, we have identified an ortholog of PRMT3 in fission yeast. Tandem affinity purification of fission yeast PRMT3 coupled with mass spectrometric protein identification revealed that PRMT3 associates with components of the translational machinery. We identified the 40S ribosomal protein S2 as the first physiological substrate of PRMT3. In addition, a fraction of yeast and human PRMT3 cosedimented with free 40S ribosomal subunits, as determined by sucrose gradient velocity centrifugation. The activity of PRMT3 is not essential since prmt3-disrupted cells are viable. Interestingly, cells lacking PRMT3 showed an accumulation of free 60S ribosomal subunits resulting in an imbalance in the 40S:60S free subunits ratio; yet pre-rRNA processing appeared to occur normally. Our results identify PRMT3 as the first type I ribosomal protein arginine methyltransferase and suggest that it regulates ribosome biosynthesis at a stage beyond pre-rRNA processing.  相似文献   

10.
The glycoprotein (G protein) gene, but not other genes, of fish rhabdoviruses, when used as a DNA vaccine was previously shown to be highly effective in inducing a protective immune response. In this study we used a DNA microarray to examine differential gene expression in Japanese flounder (Paralichthys olivaceus) in response to a DNA vaccine made from the genes of hirame rhabdovirus (Rhabdovirus olivaceus) (HIRRV) G protein (pHRV-G) and nucleocapsid (N) protein (pHRV-N). A high level of protection against HIRRV infection was observed following vaccination with the pHRV-G but no protection was observed following vaccination with the pHRV-N. Microarray analyses showed that the set of genes induced by pHRV-G was different from the set induced by pHRV-N. Specifically, five genes (Interferon-stimulated gene, 15kDa (ISG15), Interferon-stimulated gene, 56kDa (ISG56), Mx and two unknown genes) were strongly induced after injection by the pHRV-G but not pHRV-N and three of these genes are known as type I IFN-inducible genes. Poly I:C, a known inducer of type I interferon that elicits immune response similar to that elicited by a virus infection, also induced these five genes in kidney cells. These results suggest that in order to be effective and confer protection, vaccines against HIRRV and probably fish rhabdoviruses may need to stimulate the type I IFN system.  相似文献   

11.
12.
13.
Junín virus (JUNV), an arenavirus, is the causative agent of Argentine hemorrhagic fever, an infectious human disease with 15-30% case fatality. The pathogenesis of AHF is still not well understood. Elevated levels of interferon and cytokines are reported in AHF patients, which might be correlated to the severity of the disease. However the innate immune response to JUNV infection has not been well evaluated. Previous studies have suggested that the virulent strain of JUNV does not induce IFN in human macrophages and monocytes, whereas the attenuated strain of JUNV was found to induce IFN response in murine macrophages via the TLR-2 signaling pathway. In this study, we investigated the interaction between JUNV and IFN pathway in human epithelial cells highly permissive to JUNV infection. We have determined the expression pattern of interferon-stimulated genes (ISGs) and IFN-β at both mRNA and protein levels during JUNV infection. Our results clearly indicate that JUNV infection activates the type I IFN response. STAT1 phosphorylation, a downstream marker of activation of IFN signaling pathway, was readily detected in JUNV infected IFN-competent cells. Our studies also demonstrated for the first time that RIG-I was required for IFN production during JUNV infection. IFN activation was detected during infection by either the virulent or attenuated vaccine strain of JUNV. Curiously, both virus strains were relatively insensitive to human IFN treatment. Our studies collectively indicated that JUNV infection could induce host type I IFN response and provided new insights into the interaction between JUNV and host innate immune system, which might be important in future studies on vaccine development and antiviral treatment.  相似文献   

14.
15.
16.
Lim Y  Lee E  Lee J  Oh S  Kim S 《Journal of biochemistry》2008,144(4):523-529
Protein arginine methylation is one of the post-translational modifications which yield monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. In the present study, we investigated the status of protein arginine methylation during human diploid fibroblast senescence. When the expression of protein arginine methyltransferases (PRMTs), namely PRMT1, PRMT4, PRMT5 and PRMT6 was examined, a significant reduction was found in replicatively senescent cells as well as their catalytic activities against histone mixtures compared with the young cells. Furthermore, when the endogenous level of arginine-dimethylated proteins was determined, asymmetric modification (the product of type I PRMTs including PRMT1, PRMT4 and PRMT6) was markedly down-regulated. In contrast, both up- and down-regulations of symmetrically arginine-methylated proteins (the product of type II PRMTs including PRMT5) during replicative senescence were found. Furthermore, when young fibroblasts were induced to premature senescence by sub-cytotoxic H2O2 treatment, results similar to replicative senescence were obtained. Finally, we found that SV40-mediated immortalized WI-38 and HeLa cell lines maintained a higher level of asymmetrically modified proteins as well as type I PRMTs than young fibroblasts. These results suggest that the maintenance of asymmetric modification in the expressed target proteins of type I PRMTs might be critical for cellular proliferation.  相似文献   

17.
Type I interferon (IFN) induction is an immediate response to virus infection, and very high levels of these cytokines are produced when the Toll-like receptors (TLRs) expressed at high levels by plasmacytoid dendritic cells (pDCs) are triggered by viral nucleic acids. Unlike many RNA viruses, respiratory syncytial virus (RSV) does not appear to activate pDCs through their TLRs and it is not clear how this difference affects IFN-alpha/beta induction in vivo. In this study, we investigated type I IFN production triggered by RSV or influenza A virus infection of BALB/c mice and found that while both viruses induced IFN-alpha/beta production by pDCs in vitro, only influenza virus infection could stimulate type I IFN synthesis by pDCs in vivo. In situ hybridization studies demonstrated that the infected respiratory epithelium was a major source of IFN-alpha/beta in response to either infection, but in pDC-depleted animals only type I IFN induction by influenza virus was impaired.  相似文献   

18.
19.
20.
Specific cellular immune responses to human immunodeficiency virus type 1 (HIV-1) were assessed in mononuclear leukocyte cultures from homosexual men with documented, early phase HIV-1 infection. Cell cultures from men with a mean duration of 1.3 yr (range, 0.3 to 2.2 yr) of HIV-1 infection were treated with UV-inactivated, whole, purified HIV-1 Ag together with various concentrations of rIL-2. Cell supernatants were harvested after 5-day incubation and assayed for IFN activity against encephalomyocarditis virus in human WISH cells. IFN subtypes were characterized by neutralization of antiviral activity with antiserum specific for human IFN-gamma and IFN-alpha. Results showed that cultures from 68% (17 of 25) of the HIV-1-seropositive subjects produced "immune" IFN-gamma in response to whole HIV-1 Ag plus rIL-2. IFN-gamma was induced in only 20% (5 of 25) of cultures treated with HIV-1 Ag alone. Enhancement of HIV-1-specific IFN-gamma production by rIL-2 was synergistic rather than additive in that titers induced by the mixture were consistently higher than the sum of IFN titers induced by HIV-1 or rIL-2 alone. This effect was not demonstrable in cultures from 18 HIV-1-seronegative men. Similarly, HIV-1-immune specific augmentation of IFN-gamma production by rIL-2 was noted for PENV9, a recombinant HIV-1 envelope glycoprotein gp41 and gp120 fragment. Production of IFN-gamma may be an important, HIV-1-immune specific parameter in the host response to this retrovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号