首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The terminal component of the electron transport chain, cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase) was purified from Bacillus subtilis W23. The enzyme was solubilized with alkyglucosides and purified to homogeneity by cytochrome c affinity chromatography. The enzyme showed absorption maxima at 414 nm and 598 nm in the oxidized form and at 443 nm and 601 nm in the reduced form. Upon reaction with carbon monoxide of the reduced purified enzyme the absorption maxima shifted to 431 nm and 598 nm. Sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the purified enzyme is composed out of three subunits with apparent molecular weights of 57 000, 37 000 and 21 000. This is the first report on a bacterial aa3-type oxidase containing three subunits. The functional properties of the enzyme are comparable with those of the other bacterial cytochrome c oxidases. The reaction catalyzed by this oxidase was strongly inhibited by cyanide, azide and monovalent salts. Furthermore a strong dependence of cytochrome c oxidase activity on negatively charged phospholipids was observed. Crossed immunoelectrophoresis experiments strongly indicated a transmembranal localization of cytochrome c oxidase.  相似文献   

2.
Spectral examinations of the reaction of reduced cytochrome oxidase with molecular oxygen has revealed the formation of at least three intermediates, which are designated as Compounds I, II, and III according to the order of their appearance. From the difference spectrum against the oxidized oxidase, Compound I is characterized by a maximum at 605 nm, Compound II at 578 nm, and Compound III by double peaks at around 600 and 580 nm. In the Soret region, Compound I shows a peak at 435 nm and a trough at 412 nm, Compound III exhibits a peak at 442 to 443 nm and a trough at 418 nm. In the absence of cytochrome c, the spontaneous decay of Compound I precedes that of Compound II; the first order rate constants have been found to be 4 X 10(-3) s(-1) and 8 X 10(-4) s(-1) for Compounds I and II, respectively. Compound III, however, does not revert back to the oxidized form even after several hours. The decay of Compound I is accelerated in the presence of ferrocytochrome c by a factor of 10(3) to 10(4) depending on the concentration of the latter. The time for sequential differentiation between Compound I and Compound II becomes less clear in the presence than in the absence of ferrocytochrome c. On the contrary ferricytochrome c does not show such an accelerating effect. These and other observations lead us to postulate Compound I as an active intermediate, the true oxygenated compound in the cytocchrome oxidase reaction.  相似文献   

3.
Second derivative absorption spectra are reported for the aa3-cytochrome c oxidase from bovine cardiac mitochondria, the aa3-600 ubiquinol oxidase from Bacillus subtilis, the ba3-cytochrome c oxidase from Thermus thermophilis, and the aco-cytochrome c oxidase from Bacillus YN-2000. Together these enzymes provide a range of cofactor combinations that allow us to unequivocally identify the origin of the 450-nm absorption band of the terminal oxidases as the 6-coordinate low-spin heme, cytochrome a. The spectrum of the aco-cytochrome c oxidase further establishes that the split Soret band of cytochrome a, with features at 443 and 450 nm, is common to all forms of the enzyme containing ferrocytochrome a and does not depend on ligand occupancy at the other heme cofactor as previously suggested. To test the universality of this Soret band splitting for 6-coordinate low-spin heme A systems, we have reconstituted purified heme A with the apo forms of the heme binding proteins, hemopexin, histidine-proline-rich glycoprotein and the H64V/V68H double mutant of human myoglobin. All 3 proteins bound the heme A as a (bis)histidine complex, as judged by optical and resonance Raman spectroscopy. In the ferroheme A forms, none of these proteins displayed evidence of Soret band splitting. Heme A-(bis)imidazole in aqueous detergent solution likewise failed to display Soret band splitting. When the cyanide-inhibited mixed-valence form of the bovine enzyme was partially denatured by chemical or thermal means, the split Soret transition of cytochrome a collapsed into a single band at 443 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Erythrobacter longus to homogeneity as judged by polyacrylamide gel electrophoresis, and some of its properties were studied. The spectral properties of the oxidase closely resembled those of mitochondrial and other bacterial cytochromes aa3. The enzyme showed absorption peaks at 430 and 598 nm in the oxidized form, and at 444 and 603 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 600 nm. The enzyme oxidized eukaryotic ferrocytochromes C more rapidly than E. longus ferrocytochrome c. The reactions catalyzed by the enzyme were 50% inhibited by 0.7 microM KCN. The enzyme contained 1 g atom of copper and 1 g atom of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two identical subunits, each with a molecular weight of 43,000.  相似文献   

5.
Second derivative absorption spectroscopy has been used to assess the effects of complex formation between cytochrome c and cytochrome c oxidase on the conformation of the cytochrome a cofactor. When ferrocytochrome c is complexed to the cyanide-inhibited reduced or mixed valence enzyme, the conformation of ferrocytochrome a is affected. The second derivative spectrum of these enzyme forms displays two electronic transitions at 443 and 451 nm before complex formation, but only the 443-nm transition after cytochrome c is bound. This effect is not induced by poly-L-lysine, a homopolypeptide which is known to bind to the cytochrome c binding domain of cytochrome c oxidase. The effect is limited to cyanide-inhibited forms of the enzyme; no effect was observed for the fully reduced unliganded or fully reduced carbon monoxide-inhibited enzyme. The spectral signatures of these changes and the fact that they are exclusively associated with the cyanide-inhibited enzyme are both reminiscent of the effects of low pH on the conformation of cytochrome a (Ishibe, N., Lynch, S., and Copeland, R. A. (1991) J. Biol. Chem. 266, 23916-23920). These results are discussed in terms of possible mechanisms of communication between the cytochrome c binding site, cytochrome a, and the oxygen binding site within the cytochrome c oxidase molecule.  相似文献   

6.
Evidence for a hydroxide intermediate in cytochrome c oxidase   总被引:1,自引:0,他引:1  
A transient intermediate of cytochrome c oxidase has been generated by exposing the enzyme to a laser beam in the presence of oxygen. This intermediate develops when the enzyme is simultaneously reduced photoreductively and oxidized chemically, thereby forcing it to turn over. Under these conditions a form of the enzyme is generated with a line at 477 cm-1 in the resonance Raman spectrum, which we attribute to an Fe-OH stretching mode based on oxygen and hydrogen isotopic substitution. This hydroxide intermediate relaxes back to the resting state of the enzyme upon removal from the laser beam. Hydroxide intermediates have been postulated many times in the past in proposed catalytic mechanisms. The data reported here supply the first evidence for the existence of such an intermediate and a method for stabilizing it.  相似文献   

7.
Abstract Membrane-bound cytochrome c, cytochrome c-552 (m) was purified from Thiobacillus ferrooxidans . It showed an absorption peak at 410 nm in the oxidized form, and peaks at 552, 523 and 416 nm in the reduced form. Its molecular mass, E m,7 and isoelectric point were 22,300, +0.336 volt and 9.1, respectively. Another membrane-bound cytochrome c , cytochrome c -550 (m) was also purified. It showed an absorption peak at 408 nm in the oxidized form, and peaks at 550, 523 and 418 nm in the reduced form. Its molecular mass was estimated to be 51,000. Ferrocytochromes c -552 (m) and c -55 (m) were oxidized by cytochrome c oxidase of the bacterium. The reactivity with the oxidase of cytochrome c -550 (m) was higher than that of cytochrome c -552 (s) (soluble cytochrome) of the bacterium, while the reactivity of cytochrome c -552 (m) was greatly lower than that of cytochrome c -552 (s).  相似文献   

8.
Cytochrome c and cytochrome oxidase, in bovine heart submitochondrial particles and in their purified forms, were transferred to a ternary system that contained phospholipids (10 mg/ml toluene), the apolar solvent toluene, and water at concentrations of 13-15 microliters (high water) and 3 microliters (low water) per milliliter of toluene. When the enzymes were transferred back to an all water system, they exhibited full catalytic capacity. In the low water ternary system, cytochrome c could be reduced by ascorbate introduced via inverted micelles. Also in this system, cytochrome oxidase was reduced by ascorbate and cytochrome c but its oxidation was highly impaired. Data on the kinetics of reduction by ascorbate of cytochrome c and cytochrome oxidase under these conditions are presented. Cytochrome oxidase reduced in the organic solvent by ascorbate failed to form a complex with CO, but formed a complex with cyanide introduced via inverted micelles. The oxidized and the ascorbate-reduced cytochrome oxidase-cyanide complex exhibited a trough at 415 nm and a peak at 433 nm. The extent and rate of formation of the cyanide complex were higher with the reduced form of cytochrome oxidase. To achieve protein-protein interactions (cytochrome c-cytochrome oxidase) in the ternary system, it was necessary to extract the two proteins together. There was no functional interaction when they were extracted separately and mixed. In the high water ternary system reduced cytochrome oxidase was not detected, and it oxidized ascorbate at a higher rate than in the low water system; however, this rate was several orders of magnitude lower than in aqueous media.  相似文献   

9.
The method of principal component analysis (PCA) was applied to the absorption-wavelength-time surfaces generated by rapid scanning stopped-flow spectrophotometry (RSSFS). The method was used to resolve the absorption surfaces generated during the reduction of cytochrome c oxidase by 5,10-dihydro-5-methyl phenazine (MPH) into the individual spectral shapes and time courses of the component chromophores. Two forms of resting cytochrome oxidase were used in these analyses: one that has its maximum absorption in the Soret region at 418 nm (418-nm species) and the other has its absorption maximum at 424 nm (424-nm species). A weighting scheme suitable for RSSFS data was developed. The optical absorption spectra obtained by W.H. Vanneste (1966, Biochemistry, 5:838-848) for the oxidase components were found to fit adequately as components of the experimental surfaces. Among these spectra were the oxidized forms of cytochromes a and a3 in the wavelength region 330-520 nm for the 418-nm species. Vanneste's spectral shape for the oxidized cytochrome a3 did not fit as a component in the spectrum of the 424-nm species. After accounting for the spectral shape of all components present, PCA provided a straightforward method for determining the separate time courses of each chromophore. We have found for both forms used that cytochrome a is reduced by MPH in the initial stages of the reaction, while cytochrome a3 is reduced in subsequent, slow phases. An important aspect of PCA is that it provided confirmation of the spectra of the various oxidase components without requiring the use of inhibitors or the use of simplifying mechanistic assumptions. The resolution of time profiles of strongly overlapping chromophores is also demonstrated.  相似文献   

10.
Structures of reaction intermediates of bovine cytochrome c oxidase (CcO) in the reactions of its fully reduced form with O2 and fully oxidized form with H2O2 were investigated with time-resolved resonance Raman (RR) and infrared spectroscopy. Six oxygen-associated RR bands were observed for the reaction of CcO with O2. The isotope shifts for an asymmetrically labeled dioxygen, (16)O(18)O, has established that the primary intermediate of cytochrome a3 is an end-on type dioxygen adduct and the subsequent intermediate (P) is an oxoiron species with Fe=O stretch (nu(Fe=O)) at 804/764 cm(-1) for (16)O2/(18)O2 derivatives, although it had been long postulated to be a peroxy species. The P intermediate is converted to the F intermediate with nu(Fe=O) at 785/751 cm(-1) and then to a ferric hydroxy species with nu(Fe-OH) at 450/425 cm(-1) (443/417 cm(-1) in D2O). The rate of reaction from P to F intermediates is significantly slower in D2O than in H2O. The reaction of oxidized CcO with H2O2 yields the same oxygen isotope-sensitive bands as those of P and F, indicating the identity of intermediates. Time-resolved infrared spectroscopy revealed that deprotonation of carboxylic acid side chain takes place upon deligation of a ligand from heme a3. UV RR spectrum gave a prominent band due to cis C=C stretch of phospholipids tightly bound to purified CcO.  相似文献   

11.
B.T. Storey  C.P. Lee 《BBA》1973,292(3):554-565

1. Circular dichroism spectra of the cytochromes in membrane fragments derived from sonicated beef heart mitochondria have been obtained in the wavelength region 400–480 nm in which the major absorbance maxima of the heme prosthetic groups are found.

2. 2. Cytochrome oxidase in the mitochondrial membrane fragments has a band of positive ellipticity at 426 nm in the oxidized form and a pronounced band of positive ellipticity at 445 nm in the reduced form. The reduced-minus-oxidized difference molar ellipticity at 445 nm, Δ[θ]445 is 3.0·105 degree·cm−2·dmole−1 heme a for membrane-bound oxidase compared to 1.6·105 degree·cm−2·dmole−1 heme a for the purified oxidase. The membrane-bound oxidase in the reduced form also appears to have a band of negative ellipticity at 426 nm not found in the purified oxidase.

3. 3. When reduced with succinate in the presence of cyanide and oxygen, cytochrome oxidase in the membrane fragments has a positive band at 442 nm very similar to that observed with the purified oxidase.

4. 4. Cytochrome c, which has a positive band at 426 nm in the purified form when reduced, appears to have a negative band at this wavelength in the mito-chondrial membrane fragments which contributes to the pronounced negative band at 426 nm observed in the membrane fragments reduced with succinate in anaerobiosis. There is no evidence for a contribution to the CD spectra of the membrane fragments from cytochrome c1 or from cytochrome b561 in either the oxidized or the reduced form.

5. 5. Cytochrome b566 in the mitochondrial membrane fragments has no detectable CD spectrum in the oxidized form, but has a small positive band at 427 nm and a small negative band at 436 nm in the reduced form. The same CD spectrum is observed with cytochrome b566 reduced with succinate in the presence of antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide. The same increase in positive ellipticity is observed at 427 nm in the mitochondrial membrane fragments, treated with oligomycin to restore energy coupling, when cytochrome b566 is reduced with succinate in the energized membrane, as is observed in the inhibitor-treated membrane fragments. The absence of a pronounced conformational change in cytochrome b566 on energization, as revealed by its CD spectrum, favors the concept that its reduction by succinate in the energized state is due to reversed electron transport rather than an intrinsic shift in the cytochrome's midpoint redox potential.

Abbreviations: HOQNO, 2-heptyl-4-hydroxy quinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


12.
1. Cytochrome c2+ increases the rate at which cytochrome oxidase (EC 1.9.3.1) gamma max428nm) converts to its conformational isomer (gamma max 418-423 nm) but cytochrome c3+ has little effect on the conversion rate. 2. Interactions between reduced cytochrome oxidase and cytochrome c were studied in the absence of electron flow using anaerobic Sephadex columns. 3. Oxidase that is reduced by cytochrome c2+ or other reductant forms the 418-to 423-nm isomer if its last contact, before oxidation, is with cytochrome c3+. If the reduced oxidase contacts cytochrome c2+, before oxidation, the 428-nm oxidase forms.  相似文献   

13.
1. On addition of reductant (ascorbate plus NNN'N'-tetramethyl-p-phenylenediamine) to isolated cytochrome c oxidase (ox heart cytochrome aa(3)), in the presence of the inhibitors azide or cyanide, an initial partially reduced species is formed with absorption peaks at 415nm, 445nm and 605nm, which slowly gives rise to the final ;half-reduced' species in whose spectrum the 415nm peak has disappeared and a new absorption is seen at 430-435nm. 2. In the absence of reductant, cyanide forms an initial complex with the enzyme with a spectrum similar to that of the uncombined form, which slowly changes into the ;low-spin' cyanide form with a peak at 432nm. Azide, in absence of reductant, shifts the Soret peak slightly, but the resulting complex, which is probably thermally ;mixed-spin', undergoes no further changes. 3. The Soret-peak shift of oxidized cytochrome a(3) which occurs on reduction of the enzyme in the presence of azide is accompanied by a concurrent blue shift of the ferrous cytochrome a peak from 605nm to 603nm. A partial blue shift of the alpha-peak occurs in the half-reduced sulphide-inhibited enzyme, and a complete blue shift is seen in the analogous complexes with alkyl sulphides [a(2+)a(3) (3+)HSR compounds, where R=CH(3), C(2)H(5) or (CH(3))(2)CH]. 4. Analogous, albeit less readily decipherable, spectroscopic effects with the ligands imidazole and alkyl isocyanides suggest that on reduction of cytochrome a an interaction occurs between the two haem groups involving (i) a high- to low-spin change in cytochrome a(3), and after this, (ii) a change in the molecular environment of the cytochrome a. The latter effect, possibly a decrease in the hydrophobicity of the haem pocket, requires that the ligands on cytochrome a(3) have a bulky and partially hydrophobic character.  相似文献   

14.
Cytochrome oxidase has been purified from Nitrobacter agilis using hydrophobic interaction chromatography. The purified preparation contained 3-5% phospholipid and migrated as a single band during polyacrylamide gel electrophoresis under nondissociating conditions, but appeared as three bands in the presence of sodium dodecyl sulfate and 6 M urea. These three bands corresponded to molecular weights of 37 000, 25 000, and 13 000. The absorption spectra of cytochrome oxidase isolated from Nitrobacter were similar to those reported for a-type cytochrome oxidase from other sources and exhibited absorption maxima at 420 and 600 nm when oxidized and 443 and 606 nm when reduced. The purified enzyme reacted both with horse heart and Nitrobacter cytochrome c. The enzymatic activity depended upon the pH of reaction mixture, with the maximum activity at pH 6.5 and 7.5 for Nitrobacter and horse heart cytochrome c, respectively. The activity of the purified enzyme was inhibited by cyanide, azide, and diethyl dithiocarbamate.  相似文献   

15.
Particles from both Saprospira grandis and Vitreoscilla species, obtained by high-pressure extrusion and sonic treatment, respectively, actively catalyze the oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate with O(2). These activities are inhibited by cyanide but not by antimycin; Saprospira is also amytal- and rotenone-insensitive. Vitreoscilla preparations were unable to oxidize mammalian ferrocytochrome c and reduced tetramethyl-p-phenylenediamine, whereas the Saprospira preparations did so actively. Low-temperature (77 K) difference spectroscopy of Vitreoscilla cells and particles indicates the presence of three maxima in the cytochrome alpha-region at 554, 558, and 562 nm. All three cytochromes are active in NADH and succinate oxidation, but none is ascorbate reducible. Cytochrome o is the only CO-binding pigment present and is probably the terminal oxidase; it has properties similar to the cytochrome o isolated in solubilized form from this organism. Saprospira cells and membranes exhibit four cytochrome absorption bands whose maxima are at 550, 554, 558, and 603 nm at 77 K. The latter component has not been noted previously. NADH and succinate reduce all four cytochromes, but ascorbate reduces only the 550- and 603-nm pigments. CO spectra indicate the presence of cytochrome a,a(3) which is probably the oxidase. A second CO-binding pigment is present which is not a peroxidase but may be a cytochrome.  相似文献   

16.
The reaction of peroxide with cytochrome oxidase generates a peroxide compound having a Soret maximum at 428 nm. X-ray absorption spectroscopy analysis of the local structure of the active site iron shows marked similarity to that of the cytochrome c peroxidase intermediate Compound ES, which contains a short iron to proximal nitrogen distance compared to globins. Reductive titration of the 580 nm band of this compound indicates that the iron is one oxidizing equivalent above the resting oxidized form. These results support the presence of a ferryl iron (Fe(IV) = O) in the peroxide compound similar to that found for the peroxidases.  相似文献   

17.
1) Cells of Saccharomyces cerevisiae have been analysed by single and double-bean spectroscopy. Evidence is given for two components of cytochrome c oxidase in the alpha-region of their absorption spectrum. A rapidly reduceable component with a maximum at 600 nm and a slowly reduceable component with a maximum at 604 nm contribute about equal amounts to the total alpha-absorption of cytochrome c oxidase. 2) The component absorbing at 600 nm was identified as the high-potential component with a redox potential of 340 - 355mV, and the 604-nm component as the low-potential component of cytochrome c oxidase with redox potential of 180 - 190 mV. 3) Both components can be characterized by analysing the reduction kinetics in the presence of carbon monoxide. In the presence of saturating concentrations of carbon monoxide, an oxygen pulse leads to a rapid oxidation and subsequent reduction of cytochrome c oxidase, but the rapid reduction phase at 600 nm completely disappears, demonstrating its identity with cytochrome a3, which, being liganded by carbon monoxide in its reduced state, cannot react any more. The component which becomes oxidized and later reduced in the presence of carbon monoxide -- by definition cytochrome a -- has an absorption maximum at 604 nm. 4) The total extinction change at 604 nm in the presence of carbon monoxide is nearly as high as in its absence, but the reduction occurs in two phases and only the second phase, which contributes 50 - 60% to the total absorbance, corresponds in redox potential and kinetic properties to cytochrome a. Because the redox potential of the first reduction phase is very close to that of the low-potential copper atom of cytochrome c oxidase, it is concluded that the apparent increase in the extinction coefficient of cytochrome a in the presence of carbon monoxide is the result of a strong interaction between the ligand fields of cytochrome a and copper, induced by the binding of carbon monoxide to reduced cytochrome a3.  相似文献   

18.
T Ogura  S Yoshikawa  T Kitagawa 《Biochemistry》1989,28(20):8022-8027
A novel flow apparatus for continuously producing reaction intermediates of cytochrome oxidase was constructed and applied successfully to observe the transient absorption and resonance Raman spectra in its reaction with oxygen. Time-resolved difference absorption spectra in 500-650-nm region clearly indicated the formation of compound A upon photolysis of the fully reduced CO-bound form at 5 degrees C, and at this stage electrons were not transferred from cytochrome c to cytochrome oxidase. However, at the stage of formation of compound B, cytochrome c was oxidized. Resonance Raman spectra of these intermediates measured simultaneously with the absorption spectra are also reported.  相似文献   

19.
We purified membrane-bound cytochrome c-550 [cytochrome c-550(m)] to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The cytochrome showed peaks at 409 and 525 nm in the oxidized form and peaks at 416, 521, and 550 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 18,400 on the basis of protein and heme c contents and 18,600 by gel filtration. The N-terminal amino acid sequence of cytochrome c-550(m) was determined to be A-P-T-S-A-A-D-A-E-S-F-N-K-A-L-A-S-A-?-A-E-?-G-A-?-L-V-K-P. We previously purified soluble cytochrome c-550 cytochrome c-550(s)] from N. winogradskyi and determined its complete amino acid sequence (Y. Tanaka, Y. Fukumori, and T. Y. Yamanaka, Biochim. Biophys. Acta 707:14-20, 1982). Although the sequence of cytochrome c-550(m) was completely different from that of cytochrome c-550(s), ferrocytochrome c-550(m) was rapidly oxidized by the cytochrome c oxidase of the bacterium. Furthermore, the liposomes into which nitrite cytochrome c oxidoreductase, cytochrome c oxidase, and nitrite were incorporated showed nitrite oxidase activity in the presence of cytochrome c-550(m). These results suggest that cytochrome c-550(m) may be an alternative electron mediator between nitrite cytochrome c oxidoreductase and cytochrome c oxidase.  相似文献   

20.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号