首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Group selection theory has a history of controversy. After a period of being in disrepute, models of group selection have regained some ground, but not without a renewed debate over their importance as a theoretical tool. In this paper I offer a simple framework for models of the evolution of altruism and cooperation that allows us to see how and to what extent both a classification with and one without group selection terminology are insightful ways of looking at the same models. Apart from this dualistic view, this paper contains a result that states that inclusive fitness correctly predicts the direction of selection for one class of models, represented by linear public goods games. Equally important is that this result has a flip side: there is a more general, but still very realistic class of models, including models with synergies, for which it is not possible to summarize their predictions on the basis of an evaluation of inclusive fitness.  相似文献   

3.
Because alleles associated with altruistic behaviors can increase in frequency when altruists increase the fitness of closely related individuals, it has been assumed that inbreeding presents the most favorable conditions for the evolution of altruism. Using a family-structured model of kin selection, we varied the proportion of the population mating with sibs and the proportion mating randomly to investigate the hypothesis that inbreeding facilitates the evolution of altruistic behaviors.We partitioned total gene frequency change of the altruistic allele into two components: (1) the change in gene frequency owing to selection within families, or individual selection; this component of selection is always negative and selects against altruistic social behaviors; and (2) the change in gene frequency owing to fitness differences between families, or group selection; this component of selection favors the evolution of altruistic social behaviors. Because inbreeding increases the component of group selection at the expense of individual selection by increasing the between-group variation, it facilitates the spread of the altruistic allele. Computer simulations show that even small amounts of inbreeding (within-sibship mating) significantly increase the rate of gene frequency change.  相似文献   

4.
The evolution of human language, and the kind of thought the communication of which requires it, raises considerable explanatory challenges. These systems of representation constitute a radical discontinuity in the natural world. Even species closely related to our own appear incapable of either thought or talk with the recursive structure, generalized systematicity, and task-domain neutrality that characterize human talk and the thought it expresses. W. Tecumseh Fitch’s proposal (2004, in press) that human language is descended from a sexually selected, prosodic proto-language that approximated its syntactic complexity, and later acquired semantics thanks to kin selection for its use as a means of pedagogical transmission, has the promise of meeting these explanatory challenges. However, Fitch’s theory raises two problems of its own: (1) according to Boyd and Richerson (1996, Proc. Br. Acad. 88: 77–93), circumstances in which pedagogy is adaptive are inevitably rare in nature, and (2) it is unlikely that our non-discursive precursors had generally systematic, task-domain neutral thoughts to communicate to their offspring. I propose solutions to these problems. Pedagogy would be favored in a population where complex rituals dominated diverse aspects of life. Prosodic proto-language could emerge as the medium of pedagogic transmission. As this medium was used to teach a greater variety of tasks, it would become increasingly general and domain neutral. The presence and importance of such a system of communication in hominid populations could then drive, via Baldwinian mechanisms, the evolution of a kind of ‘thinking for speaking’ (Slobin 1991, Pragmatics 1: 7–25) characterized by recursive structure, generalized systematicity, and task-domain neutrality.  相似文献   

5.
Natural selection operates both directly, via the impact of a trait upon the individual's own fitness, and indirectly, via the impact of the trait upon the fitness of the individual's genetically related social partners. These effects are often framed in terms of Hamilton's rule, rb - c > 0, which provides the central result of social-evolution theory. However, a number of studies have questioned the generality of Hamilton's rule, suggesting that it requires restrictive assumptions. Here, we use Fisher's genetical paradigm to demonstrate the generality of Hamilton's rule and to clarify links between different studies. We show that confusion has arisen owing to researchers misidentifying model parameters with the b and c terms in Hamilton's rule, and misidentifying measures of genotypic similarity or genealogical relationship with the coefficient of genetic relatedness, r. More generally, we emphasize the need to distinguish between general kin-selection theory that forms the foundations of social evolution, and streamlined kin-selection methodology that is used to solve specific problems.  相似文献   

6.
Genetical aspects of kin selection: effects of inbreeding   总被引:5,自引:0,他引:5  
Hamilton's c/b < “r” rule is an important tool in sociobiological research and clearly functions as a “positive heuristic”, sensu Lakatos (1970). This paper examines the theoretical underpinnings of this rule in population genetics when inbreeding is taken into account. The model used is an extension of Charnov (1977) and assumes that the altruistic gene codes for a behavior between inbred individuals of a fixed genetic relationship. No consideration is given to the population or mating system processes which give rise to this relationship. It is shown that in inbred populations with weak selection the right-hand side of Hamilton's rule depends upon gene frequency and dominance as well as the degree of genetic relationship between the individuals involved. Because of this dependence, stable polymorphisms in altruistic and non-altruistic alleles are possible for certain ranges of c/b ratios. Another consequence is that the more dominant the altruistic gene, the easier it is for it to invade a population, but the harder it is for it to increase to high frequencies. In the special case when the individuals involved are inbred to the same extent and gene effects are additive, the RHS of the rule is independent of gene frequency and equals bYX and rYX: respectively Hamilton's regression coefficient of relatedness and Wright's correlation coefficient of relationship.  相似文献   

7.
The direct-fitness approach to modelling the evolution of social traits is an alternative to the classical inclusive-fitness-based approach. Despite both its utility and popularity, the direct-fitness approach has not yet been extended to include the analysis of dynamic traits, i.e. traits whose level of expression may vary over time. In this article, I apply the direct-fitness approach to cope with the evolution of a dynamic resource-allocation behaviour when this behaviour influences the fitness of relatives. I am able to implement the direct-fitness approach using components (reproductive value, fitness changes and measures of relatedness) found in standard, social-evolutionary models. I illustrate the modified direct-fitness model with an example studied by previous authors, and I show how the direct-fitness perspective can aid the validation of analytical results by means of a genetic algorithm.  相似文献   

8.
Kin selection,kin avoidance and correlated strategies   总被引:1,自引:0,他引:1  
Summary Kin selection of correlated strategies is examined for both weak and strong altruism under simple haploid inheritance. While kin assortment enhances the range of evolutionary stability for (strongly altruistic) correlated strategies (defined herein), kin avoidance is possible under a weakly altruistic correlated strategy. When social competition induces role assignments of variable fitness, group mates may prefer association with non-relatives. Even when group life is mandatory, an individual may accept the risk of abandonment (and reproductive death) rather then associate with kin: a competitive superior may behave altruistically by permitting competitively inferior kin to emigrate. Thus, kin selection and social competition are not necessarily mutually supportive processes within groups. I conclude by interpreting dominance as a strongly altruistic correlated strategy in two social hymenopteran contexts.  相似文献   

9.
Advanced eusociality, kin selection and male haploidy   总被引:1,自引:0,他引:1  
Abstract  The generation-long primacy of kin selection in explaining the evolution of advanced eusociality in social insects has been challenged in recent papers. Does this challenge succeed? I consider three questions: is kin selection still the unchallengeable explanation for the evolution of eusociality; is the male haploidy of Hymenoptera important in this explanation; and, a subsidiary question of why are there no male workers in Hymenoptera? I briefly trace the origins of kin selection back to Darwin and then consider the explanations of mutualism, group selection, parental manipulation, and kin selection and its variant 'green beard' alleles. I stress that in the kin selection equation, however written, relatedness is deeply intertwined with ecology so that both are essential. Kin selection does remain unchallengeable but, for some, the role of male haploidy has lost favour recently despite several modelling efforts all finding that it favours the evolution of eusociality. Sex allocation is deep at the heart of the evolution of hymenopteran advanced eusociality, indicating the interacting roles of population genetics and general biology. Modellers have also found no reason for a lack of male workers, so that a biological superiority of females for this role is indicated for social Hymenoptera.  相似文献   

10.
11.
《Ethology and sociobiology》1988,9(2-4):223-239
The development of a theory of kin selection has proceeded along two lines. Inclusive- fitness models have implicitly assumed that selection is weak, whereas exact-population genetic models place no constraints on the strength of selection. Several examples are presented showing that qualitatively new behavior has emerged from the exact models. However, for many problems, the exact-population and inclusive-fitness models often yield identical results. Unfortunately, it is not possible to identify a priori those problems that can be handled sufficiently by the simpler inclusive-fitness models. The initial increase of cooperative behavior in a population of egoists involves difficulties similar to the initial increase of altruism. Clustering of cooperatives produces dynamics for the increase of cooperation that are formally similar to population models of inbreeding. Here, an increase in the tendency to cluster is equivalent to increasing the “relationship” among cooperatives, and therefore augments the chance for cooperation to increase.  相似文献   

12.
13.
亲缘选择是动物进化的重要研究领域之一,非人灵长类因具有丰富的社会网络,是亲缘选择研究领域的重要类群。动物进行亲缘选择的前提是亲缘识别,并常通过社会行为的亲缘偏向表现。因此,本文从非人灵长类的亲缘识别机制和亲缘关系对其社会行为的影响两方面进行了综述:熟悉性和表现型匹配是目前普遍认同的非人灵长类亲缘识别机制,同时这两种机制并不相互排斥,它们可能共同在灵长类的亲缘识别中起作用;在非人灵长类中,亲缘关系是影响社会行为模式的主导因子,它影响着多种灵长类个体的友好行为、攻击行为和性行为的选择,同时亲缘偏向行为在不同物种中表现不尽相同,说明亲缘选择理论可以部分解释灵长类的行为,但存在一定的局限性。本文分析了两种亲缘识别机制的异同以及在实际研究中利用亲缘选择理论解释非人灵长
类社会行为的局限及可能原因。目前,对非人灵长类社会中的亲缘选择研究正逐步深入,其中分子遗传学技术的应用是重要的推动力量。同时,依然存在诸如汉密尔顿规则参数估计和新大陆猴的亲缘选择研究案例的难点,有待研究者进一步探究。  相似文献   

14.
15.
This paper examines the conditions under which the classical inclusive fitness formulation of Hamilton (1964) provides an adequate approximation to the dynamics of gene frequency change and to conditions for genetic equilibrium, in the “additive” model of altruism between sibs of Uyenoyama and Feldman (1981). It is concluded that the classical formulation is adequate, provided that either the effect of the gene on the probability of behaving altruistically is low or the costs and benefits of altruism are small, unless the benefit/cost ratio k is very close to 2, the value that must be exceeded for altruism to be favoured. In addition, the gene for altruism must be underdominant, recessive or partially recessive in its effect on the probability of behaving altruistically, for the inclusive fitness predictions to break down significantly.  相似文献   

16.
Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection.  相似文献   

17.
Lehmann L  Balloux F 《Genetics》2007,176(1):361-377
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.  相似文献   

18.
A model is constructed to study the effects of local mate competition and multiple mating on the optimum allocation of resources between the male and female reproductive brood in social hymenopteran colonies from the ‘points of view’ of the queen (parental manipulation theory) as well as the workers (kin selection theory). Competition between pairs of alleles specifying different sex investment ratios is investigated in a game theoretic frame work. All other things being equal, local mate competition shifts the sex allocation ratio in favour of females both under queen and worker control. While multiple mating has no effect on the queen’s optimum investment ratio, it leads to a relatively male biased investment ratio under worker control. Under queen control a true Evolutionarily Stable Strategy(ess) does not exist but the ‘best’ strategy is merely immune from extinction. A trueess exists under worker control in colonies with singly mated queens but there is an asymmetry between the dominant and recessive alleles so that for some values of sex ratio a recessive allele goes to fixation but a dominant allele with the same properties fails to do so. Under multiple mating, again, a trueess does not exist but a frequency dependent region emerges. The best strategy here is one that is guaranteed fixation against any competing allele with a lower relative frequency. Our results emphasize the need to determine levels of local mate competition and multiple mating before drawing any conclusions regarding the outcome of queen-worker conflict in social hymenoptera. Multiple mating followed by sperm mixing, both of which are known to occur in social hymenoptera, lower average genetic relatedness between workers and their reproductive sisters. This not only shifts the optimum sex ratio from the workers’ ‘point of view’ in favour of males but also poses problems for the kin selection theory. We show that kin recognition resulting in the ability to invest in full but not in half sisters reverts the sex ratio back to that in the case of single mating and thus completely overcomes the hurdles for the operation of kin selection.  相似文献   

19.
In this paper I argue (a) that the study of kin selection may be facilitated by looking for influences of inbreeding, which is an important aspect of a population's genetic structure; (b) that in nonhuman primates the level of inbreeding will be largely a function of the rate of migration by individuals, usually only of one sex, between social units or troops; (c) that many primate species live in relatively outbred groups, and that their social structure reflects this; and (d) that extensive social contrasts between bonnet and pigtail macaques reflect evolution by kin selection under different levels of inbreeding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号