首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Informatics》2009,4(3):123-135
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimplified approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very difficult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.  相似文献   

2.
系统保护规划的理论、方法及关键问题   总被引:3,自引:0,他引:3  
张路  欧阳志云  徐卫华 《生态学报》2015,35(4):1284-1295
为了减缓生物多样性丧失的趋势、将有限的保护资源用于关键区域,Margules等提出了系统保护规划(Systematic Conservation Planning)概念和方法,目前该方法已成为国际主流保护规划方法。与传统基于专家决策的保护体系规划方法不同,系统保护规划拥有量化的保护目标、保护成本,并综合考虑保护体系连通性、人为干扰因素,使用优化算法计算,从而获得空间明晰的生物多样性保护体系。在阐述规划理念、规划流程与方法的基础上,重点评述了生物多样性替代指标的选择、保护规划成本的计算、保护目标的设置、规划结果的可靠性评估等关键问题,并结合我国的具体情况,探讨了该方法在我国的应用前景,以期为推进我国生物多样性与生态服务功能的保护做出贡献。  相似文献   

3.
Systematic conservation planning (SCP) is a field of conservation biology concerned with delivering on‐the‐ground actions that achieve conservation goals. It describes a set of operational models that cover both design and implementation of conservation, with a strong focus on mobilising the collective action typically required to implement conservation. SCP, as it was originally described, was composed of six different stages: collection of data, identification of conservation goals, evaluation of the existing protected area network, design of expansions, implementation of conservation action, and long‐term maintenance of biodiversity in the network. Since then, the operational model has been expanded into several different variants. Conservation actions applied inside SCP include establishment and expansion of reserve networks and allocation of habitat restoration and management. Within the broader context of SCP, there is a fundamental biogeographic‐economic analysis frequently called spatial conservation prioritisation or conservation assessment, which is used for identifying where important areas for biodiversity are and how conservation goals might be achieved efficiently. Here, we review the usage and meaning of the 12 biogeographic‐economic core concepts of SCP: adequacy, complementarity, comprehensiveness, effectiveness, efficiency, flexibility, irreplaceability, replacement cost, representation, representativeness, threat, and vulnerability. Some of the concepts have clear definitions whereas others may have alternative and possibly conflicting definitions. With a comprehensive literature review literature, we elucidate the historical backgrounds of these concepts, the first definitions and usages, alternative later definitions, key applications, and prior reviews. This review reduces linguistic uncertainty in the application of SCP. Since SCP is a global activity with a multitude of different stakeholders involved, it is vital that those involved can speak the same language. Through these concepts, this review serves as a source of information about the historical development of SCP. It provides a comprehensive review for anyone wishing to understand the key concepts of spatial prioritisation within SCP.  相似文献   

4.
郭云  梁晨  李晓文 《生态学报》2018,38(6):1984-1993
基于系统保护规划的理论和方法,以长江流域湿地为研究区,构建了基于气候、地貌分异的湿地生态地理综合分类单元,并将其作为宏观尺度湿地生态系统保护目标,同时考虑以湿地鸟类为代表的物种保目标,依托Marxan系统保护规划工具,确定了长江流域湿地保护具有不可替代性的优先保护格局。该格局能以最小的社会经济和土地资源代价最大程度的保护湿地生物多样性,对比现有湿地保护格局,最终确定了游离于现有保护体系外的湿地保护空缺。研究结果表明:长江流域源区和长江三角洲地区的湿地保护体系完善,无需新建保护区;金沙江流域湿地保护空缺主要分布在现有保护区周围,可以适当扩充保护区外围或调整边界;嘉陵江流域和长江上游干流流域的保护空缺严重,大面积集中在重庆西北部,乌江流域的贵州省习水县北部湖泊湿地存在保护空缺,这些区域建议适当新建保护区或者保护小区;长江中下游湿地保护空缺主要分布在湖北、湖南、江西与安徽境内的沿江湖泊湿地,建议建立湿地公园及合理进行河流岸坡修复。研究结果可为长江流域湿地保护体系调整、保护规划制定提供参考依据,从宏观层面上为长江流域湿地统筹保护及合理开发利用提供科学依据。  相似文献   

5.
以中国东北地区为研究区域,根据生物多样性属性特征,选择研究区域内具有代表性的濒危物种作为指示物种,利用系统保护规划方法(Systematic Conservation Planning,SCP)和保护规划软件(C-Plan),对该区域进行了优先保护规划研究。通过计算规划单元的不可替代性值(Irreplaceability,IR),找出区域生物多样性热点地区和保护空缺地区,然后利用C-Plan规划软件对该地区进行保护优先等级划分,确定必须保护(Mandatory Reserved,MR)、协商保护(Negotiated Reserved,NR)和部分保护(PartiallyReserved,PR)3个等级保护区域的具体位置和面积,并针对保护现状提出保护规划建议。结果显示,必须保护区域的总面积占区域总面积的8.17%,主要分布于长白山核心地区和大兴安岭北部原始林区;协商保护区域占总面积的7.51%,主要分布于大兴安岭东南部和松嫩平原湿地;部分保护区域占总面积的9%。保护空缺分析结果显示,现有国家级自然保护区对生物多样性的保护存在3个明显的保护空缺,即长白山林区的龙岗山地区、老爷岭北部和张广才岭南部;大兴安岭北部原始林区、呼玛河—黑龙江流域的平原湿地和伊勒呼里山东南部山区;大兴安岭南部森林草原过渡区的东南部森林地区。结合区域内已建立的国家级自然保护区情况,利用C-Plan规划软件对不同时期建立的保护区实现保护目标的贡献率做了分析。截止2000年,已建保护区可实现预期保护目标的17.5%,通过对贡献率大小的比较确定了不同时期保护的有效程度。研究打破了传统的对称几何形状的单元划分方法,根据植被类型和自然地形地貌,采用自然多边形进行单元划分,提高了物种分布范围准确度。研究通过C-Plan规划软件的实际应用,丰富了系统保护规划研究的方法,从理论上为区域保护规划提供了科学依据,并可指导我国自然保护区管理政策的制定和中长期规划的编制。  相似文献   

6.
黄淮海地区跨流域湿地生态系统保护网络体系优化   总被引:4,自引:1,他引:4  
运用系统保护规划方法,以集水区为保护规划单元,综合考虑三维(3D)连接性(横向、纵向、垂向)和跨流域调水工程,通过不可替代性分析和保护空缺识别,对黄淮海地区跨流域湿地生态系统保护网络体系优化进行研究,并通过与已有保护体系对比,评估了优化体系的效用.结果表明: 依据不可替代性大小和连接性原则,湿地保护空缺可分为优先保护空缺和一般保护空缺;黄淮海地区湿地生态系统保护体系经过优化后,湿地保护状况整体上有较大改观,其中所有湿地类型受保护比重由初始的20%左右增长到46.8%,且各湿地类型保护状况都有不同程度的改善,优化体系中的受保护比重大多在40%以上.无论是从近期还是长远来看,湖泊湿地保护都应给予较多关注.生态系统服务价值和生物多样性相整合、保护和恢复相结合是未来湿地生态系统保护规划研究中应关注的方面.  相似文献   

7.
综合三江平原湿地不同层次、不同维度的生物多样性特征,在系统保护规划方法(Systematic Conservation Planning,SCP)框架下,以集水区为规划单元,计算研究区域不可替代性指数,确定高保护价值网络体系,通过保护空缺分析对现有保护网络进行优化,并评估优化体系的有效性。结果表明:三江平原湿地高保护价值区域的分布呈现沿河流分布的特点;现有保护区中湖泊和目标物种的保护状态比较好;保护网络体系优化后,沼泽湿地在保护网络中的比重由22.88%重增加到50%以上;河流湿地由16.20%增加到33.92%;地下水资源在现有保护网络中的比重非常低,仅为2.01%,优化后保护网络中保护比重增加到12.05%,因此在今后的保护区规划中,应该重视对地下水资源的保护和管理。另外本研究结合生态脆弱性对高保护价值的空缺设计3个情景方案,并根据生态威胁的种类和强度提出各优先保护方案的保护建议,为保护管理决策提供依据。  相似文献   

8.
Systematic conservation planning is a widely used approach for designing protected area systems and ecological networks. This generally involves dividing the planning region into a series of planning units and using computer software to select portfolios of these units that meet specified conservation targets whilst minimising conservation costs. Previous research has shown that changing the size and shape of these planning units can alter the apparent spatial characteristics of the underlying data and thus influence conservation assessment results. However, this may be less problematic when using newer software that can account for additional constraints based on portfolio costs and fragmentation levels. Here we investigate these issues using a dataset from southern Africa and measure the extent to which changing planning unit shape, size and baseline affects the results of conservation planning assessments. We show that using hexagonal planning units instead of squares produces more efficient and less fragmented portfolios and that using larger planning units produces portfolios that are less efficient but more likely to identify the same priority areas. We also show that using real-world constraints in the analysis, based on reducing socio-economic costs and minimising fragmentation levels, reduces the influence of planning unit characteristics on the results and so argue that future studies should adopt a similar approach when investigating factors that influence conservation assessments.  相似文献   

9.
Systematic conservation planning (SCP) is a field of conservation biology concerned with the effective allocation of conservation efforts and the implementation of actions aiming to guarantee biodiversity persistence in the long-term and the efficient use of conservation resources. Here, we evaluated the main spatial-temporal trends and patterns among highly-cited papers in SCP. We considered “highly-cited” articles as those papers with at least 100 citations according to Web of Science database. A total of 132 highly-cited articles were published between 1989 and 2014, with the highest frequency at 2006. Papers were published in 25 different scientific journals (with a highlight for Conservation Biology and Biological Conservation) by researchers from 208 institutions and 25 countries (most from Australia and USA). Most of the analytical and methodological studies were carried out in the terrestrial environment, by considering more than one taxonomic group, and at a regional scale. Eleven studies included information on costs (e.g., economic or land use) in the prioritization process, and only one article considered information on other biodiversity dimensions such as phylogenetic diversity. Among analytical papers, 41 included only biodiversity data in the prioritization process, while 16 papers considered data on other features such as ecosystem services, biophysical factors, and vegetation. Furthermore, a plethora of different algorithms and software were used to perform the analyses. By analyzing the top-cited papers, we could track through time the main advances and stages of the development in SCP.  相似文献   

10.
在当今世界土地资源极度紧缺的大背景下,研究不同土地利用情景下的生物多样性,评估其达到生物多样性预期目标的能力,已成为土地规划领域的重要研究方向,具有重要的理论研究意义和实践价值。本文在大量文献研究的基础上,简要分析了土地利用对生物多样性的作用机理,详细总结了土地类型组成、土地利用连接度、土地利用强度与土地利用聚合度4个关键性因子对生物多样性绩效影响的研究现状。针对现有研究进展,从多样性指标、生态机制、时空异质性、参与情景模拟、非线性系统规律5个方面阐述了如何进一步完善土地利用与生物多样性的研究内容。研究结果表明,土地利用与生物多样性绩效的关系符合复杂适应性系统在风景园林规划中运用的规律,满足构建研究规划协同实践的概念性框架。进而重点从引导以生物多样性保护为重要目标的用地控制策略、建立多尺度一体化的生物多样性保护格局、发挥不同尺度蓝—绿网络体系的载体作用、构建区域层面的生物多样性发展骨架、提高城市环境下生物多样性的引导措施、推进不确定性规划减少决策风险6个方面提出了土地利用—生物多样性绩效关联分析对风景园林规划中可资借鉴的思考。  相似文献   

11.
运用系统保护规划方法,进行了黄淮海地区湿地生态系统保护多预案分析研究.研究中以集水区为保护规划单元,综合考虑河流湿地生态系统、非河流湿地生态系统、保护物种、地下水等生物信息和路网、居民分布、水坝等社会经济信息,以及已有湿地保护区信息,以二维(2D)连接性(横向连接性、纵向连接性)和三维(3D)连接性(横向连接性、纵向连接性、垂向连接性)为原则,模拟研究了不同保护目标和不同保护格局聚集性的湿地保护预案.结果表明:基于2D连接性的研究,对河流湿地、非河流湿地和物种设定30%的保护目标,选取边界长度调节(BLM)值为0.36的保护格局聚集性,以此得到的保护方案相对合理;而基于3D连接性时,对河流湿地、非河流湿地和保护物种设定30%的保护目标,地下水设定55%的保护目标,选取0.06边界长度调节值的保护格局聚集性,得到的保护方案相对合理;基于3D连接性保护方案的效率要比基于2D连接性的高.对于严重缺水的黄淮海地区来说,3D连接性的考虑不仅必要,而且可行,具有重要的现实意义.  相似文献   

12.
Biological invasions and climate changes are the major causes of changes in biodiversity, which reduce, shift, and extinguish species ranges. While climate changes have been widely used in systematic conservation planning (SCP), biological invasions are rarely considered. Here, we combine the effects of climate changes and Artocarpus heterophyllus Lam. (Moraceae) invasion on the SCP for endemic aromatic fruit tree species from the Atlantic Forest (EFAF). We tested the effect of invasion on SCP measures of species turnover, biotic stability, and irreplaceability. Ecological niche models were used to establish species environmental suitability for the preindustrial period for both invasive species and EFAF and to forecast to the end of the century (2080–2100). We calculated the niche overlap between the invasive species and EFAF and tested the overlap significance using a null model. We tested the biological invasion effect on the results using results with no species invasion correction. The niche overlap between A. heterophyllus and EFAF was significant for 50% of species in the preindustrial period and for 33% in the future. The spatial patterns of species turnover, biotic stability, and irreplaceability had significant effects on biological invasion changing the spatial pattern in both shape and magnitude, which can misplace and overvalue conservation priorities. We showed that the disregard of biological invasion on SCP can cause negative effects on SCP under climate change. We strongly recommend accounting for biological invasion in the evaluation of SCP.  相似文献   

13.
14.
Conservation decisions are challenging, not only because they often involve difficult conflicts among outcomes that people value, but because our understanding of the natural world and our effects on it is fraught with uncertainty. Value of Information (VoI) methods provide an approach for understanding and managing uncertainty from the standpoint of the decision maker. These methods are commonly used in other fields (e.g. economics, public health) and are increasingly used in biodiversity conservation. This decision‐analytical approach can identify the best management alternative to select where the effectiveness of interventions is uncertain, and can help to decide when to act and when to delay action until after further research. We review the use of VoI in the environmental domain, reflect on the need for greater uptake of VoI, particularly for strategic conservation planning, and suggest promising areas for new research. We also suggest common reporting standards as a means of increasing the leverage of this powerful tool. The environmental science, ecology and biodiversity categories of the Web of Knowledge were searched using the terms ‘Value of Information,’ ‘Expected Value of Perfect Information,’ and the abbreviation ‘EVPI.’ Google Scholar was searched with the same terms, and additionally the terms decision and biology, biodiversity conservation, fish, or ecology. We identified 1225 papers from these searches. Included studies were limited to those that showed an application of VoI in biodiversity conservation rather than simply describing the method. All examples of use of VOI were summarised regarding the application of VoI, the management objectives, the uncertainties, the models used, how the objectives were measured, and the type of VoI. While the use of VoI appears to be on the increase in biodiversity conservation, the reporting of results is highly variable, which can make it difficult to understand the decision context and which uncertainties were considered. Moreover, it was unclear if, and how, the papers informed management and policy interventions, which is why we suggest a range of reporting standards that would aid the use of VoI. The use of VoI in conservation settings is at an early stage. There are opportunities for broader applications, not only for species‐focussed management problems, but also for setting local or global research priorities for biodiversity conservation, making funding decisions, or designing or improving protected area networks and management. The long‐term benefits of applying VoI methods to biodiversity conservation include a more structured and decision‐focused allocation of resources to research.  相似文献   

15.
When identifying conservation priorities, the accuracy of conservation assessments is constrained by the quality of data available. Despite previous efforts exploring how to deal with imperfect datasets, little is known about how data uncertainty translates into errors in conservation planning outcomes. Here, we evaluate the magnitude of commission and omission error, effectiveness and efficiency of conservation planning outcomes derived from three datasets with increasing data quality. We demonstrate that investing in data acquisition might not always be the best strategy as the magnitude of errors introduced by new sites/species can exceed the benefits gained. There was a trade-off between effectiveness and efficiency due to poorly sampled rare species. Given that data acquisition is limited by the high cost and time required, we recommend focusing on improving the quality of data for those species with the highest level of uncertainty (rare species) when acquiring new data.  相似文献   

16.
Negative interactions between humans and animals are becoming increasingly frequent, as wild habitats shrink and human presence and activities expand throughout the world. Conflicts between people over conservation are one of the outcomes of this increased interaction, with severe consequences for both wildlife and people. Globally, conflicts can arise across diverse ecosystems, species and circumstances. Even if most attention in wildlife-related conflicts has been on mammals, birds are also often at the centre of such conflicts, but conflict research is still not explicitly present in ornithological literature. Examples of such conflicts include those related to birds and agriculture, forestry, hunting, fishing and public health interests. Conflicts are often more complex than initial assessments might suggest, involving ecological, economic, cultural, social and political elements. Reflecting the complexity of these issues and their increasing relevance to bird conservation, a British Ornithologists' Union conference was organized in November 2021 that aimed to highlight examples of conflicts that exist between people over birds and their conservation. Building on this conference, we provide here a review of key themes relating to the understanding of conflicts, including the importance of conflict perceptions, the collaboration between multiple disciplines and the different types of knowledge needed to better understand conflicts. We then consider the management of bird conservation conflicts, including the key issues of dealing with uncertainty, the role of technical solutions and the importance of collaboration and building trust, illustrating each theme with real-world examples. Finally, we outline potential future conflicts around bird conservation and how best to address them proactively.  相似文献   

17.
郭云  梁晨  李晓文 《应用生态学报》2018,29(9):3024-3032
黄河流域湿地为我国生物多样性维持提供了重要生境.本研究基于黄河流域气候分区、地貌单元及湿地遥感数据,构建黄河流域生态地理综合湿地分类系统.在系统保护规划理论框架下,将湿地气候-地貌分类单元作为生态系统层次保护对象,结合黄河流域鸟类分布范围作为物种层次的保护对象,设定30%湿地优化目标,将公路、铁路、城镇、农村居民点、水坝等作为度量因子创建黄河流域保护代价图层,并利用系统保护规划工具--Marxan软件构建黄河流域湿地保护优化格局,识别湿地保护空缺.结果表明: 黄河流域大部分沼泽湿地集中在黄河上游区域,目前源区保护区覆盖面积大,在内蒙古、甘肃及四川部分区域一些稀有湿地类型游离在保护体系外;黄河中游湿地类型以河道和河滩湿地类型为主,保护覆盖率极低,保护空缺严重,经优化保护网络体系后,保护成效可分别得到29.1%、37.6%的提升.黄河下游湿地主要集中在黄河三角洲区域,目前保护体系完整,保护空缺面积极小.总体上,黄河流域中游河流湿地的保护空缺比例最高,亟需重视.本研究基于湿地保护格局优化结果分区分析黄河流域湿地保护模式,为黄河流域湿地的保护规划管理提供了科学性建议,从宏观层面上为黄河流域水生态保护奠定了基石.  相似文献   

18.
城市生物多样性水平是反映人与自然和谐共处水平的重要指标,对促进城市可持续发展有着重要意义。城市及其基础设施的扩张改变了土地原有的生态系统、水文状况和地表结构,不断加快的城市化进程对生物多样性造成了严重影响,城市生物多样性保护已成为当下城市生态建设中重要且紧迫的工作。与传统的生物多样性研究不同,城市生物多样性保护工作以保护生物多样性为前提,争取科学利用生物多样性为城市带来更广泛的经济效益和社会效益。当前城市生物多样性研究成果丰富且涉及层面多元,但仍面临缺乏系统性、整体性评价框架以及跨界、多尺度管理等关键问题。故对国内外城市生物多样性的状况评价、效益评价和提升路径三方面的相关研究进行综述,总结当前城市生物多样性评价的标准与方法,并从城市生物多样性保护面对的主要挑战出发,梳理介绍国际合作、国家政策、城市规划、专项保护以及基于自然的解决方案等角度的城市生物多样性提升路径。讨论了城市生物多样性的关注点与未来研究方向,并对城市生物多样性保护提出政策建议,为各地编制生物多样性保护规划和开展城市生物多样性保护工作提供借鉴,以期促进城市生物多样性保护和人与自然的协调发展。  相似文献   

19.
Life cycle costing (LCC) is the state-of-the-art method to economically evaluate long-term projects over their life spans. However, uncertainty in long-range planning raises concerns about LCC results. In Part I of this series, we developed a holistic framework of the different types of uncertainty in infrastructure LCCs. We also collected methods to address these uncertainties. The aim of Part II is to evaluate the suitability of methods to cope with uncertainty in LCC. Part I addressed two research gaps. It presented a systematic collection of uncertainties and methods in LCC and, furthermore, provided a holistic categorization of both. However, Part I also raised new issues. First, a combined analysis of sources and methods is still outstanding. Such an investigation would reveal the suitability of different methods to address a certain type of uncertainty. Second, what has not been assessed so far is what types of uncertainty are insufficiently addressed in LCC. This would be a feature to improve accuracy of LCC results within LCC, by suggesting options to better cope with uncertainty. To address these research gaps, we conducted a systematic literature review. Part II analyzed the suitability of methods to address uncertainties. The suitability depends on data availability, type of data (tangible, intangible, random, non-random), screened hotspots, and tested modeling specifications. We identified types of uncertainties and methods that have been insufficiently addressed. The methods include probabilistic modeling such as design of experiment or subset simulation and evolutionary algorithm and Bayesian modeling such as the Bayesian latent Markov decision process. Subsequently, we evaluated learning potential from other life cycle assessment (LCA) and life cycle sustainability assessment (LCSA). This analysis revealed 28 possible applications that have not yet been used in LCC. Lastly, we developed best practices for LCC practitioners. This systematic review complements prior research on uncertainty in LCC for infrastructure, as laid out in Part I. Part II concludes that all relevant methods to address uncertainty are currently applied in LCC. Yet, the level of application is different. Moreover, not all methods are equally suited to address different categories of uncertainty. This review offers guidance on what to do for each source and type of uncertainty. It illustrates how methods can address both based on current practice in LCC, LCA, and LCSA. The findings of Part II encourage a dialog between practitioners of LCC, LCA, and LCSA to advance research and practice in uncertainty analysis.  相似文献   

20.
Systematic Conservation Planning (SCP) involves a series of steps that should be accomplished to determine the most cost-effective way to invest in conservation action. Although SCP has been usually applied at the species level (or hierarchically higher), it is possible to use alleles from molecular analyses at the population level as basic units for analyses. Here we demonstrate how SCP procedures can be used to establish optimum strategies for in situ and ex situ conservation of a single species, using Dipteryx alata (a Fabaceae tree species widely distributed and endemics to Brazilian Cerrado) as a case study. Data for the analyses consisted in 52 alleles from eight microsatellite loci coded for a total of 644 individual trees sampled in 25 local populations throughout species’ geographic range. We found optimal solutions in which seven local populations are the smallest set of local populations of D. alata that should be conserved to represent the known genetic diversity. Combining these several solutions allowed estimating the relative importance of the local populations for conserving all known alleles, taking into account the current land-use patterns in the region. A germplasm collection for this species already exists, so we also used SCP approach to identify the smallest number of populations that should be further collected in the field to complement the existing collection, showing that only four local populations should be sampled for optimizing the species ex situ representation. The initial application of the SCP methods to genetic data showed here can be a useful starting point for methodological and conceptual improvements and may be a first important step towards a comprehensive and balanced quantitative definition of conservation goals, shedding light to new possibilities for in situ and ex situ designs within species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号