首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动物个性研究进展   总被引:2,自引:1,他引:1  
"个性"是指不同时空条件下动物种群个体间行为的稳定差异。大量的理论和实验性研究表明,个性差异在动物界普遍存在,其是种群多度和分布、物种共存及群落构建的重要驱动因子。介绍了动物个性的概念、分类及衡量指标,将前人测量个性类型的方法加以总结;随后介绍了动物个性的生态学意义,尤其是个性对动物生活史策略、种群分布与多度、群落结构和动态、生态系统功能和过程以及疾病与信息传播等的影响。在此基础上,进一步分析了在人类活动增加等全球变化背景下,动物个性如何调控动物个体行为、种群和群落动态对这些环境变化的响应。阐述了动物个性的形成与维持机制,并对未来的研究方向进行了展望。  相似文献   

2.
植物群落构建的生态过滤机制研究进展   总被引:1,自引:0,他引:1  
许驭丹  董世魁  李帅  沈豪 《生态学报》2019,39(7):2267-2281
生物多样性的形成和维持机制,即群落构建机制,一直以来都是群落生态学研究的核心问题。植物群落构建的确定性过程主要是生态过滤机制(包括环境过滤和生物过滤,其中生物过滤包括种间竞争和种内功能性状变异)作用的结果。学者们构建了大量的理论、方法、模型来解释和验证生态过滤机制对群落构建的影响,并取得了显著的成果。然而,关于生态过滤机制在不同尺度的作用、生态过滤机制的各要素分解和量化等方面的研究仍有诸多疑问。重点综述了环境过滤、种间竞争和种内功能性状变异的最新研究进展,并指出了现有研究的不足之处。在未来的研究中,应注重生态过滤机制的各要素分解和量化,加强研究手段的综合运用,关注时空动态变化对植物群落构建的影响,重视对不同植物群落构建机制的共性和个性特征的认识,同时强调与其他生态过程、群落构建机制的整合。通过这些尝试,有助于人们更好的理解植物群落构建过程中的生态过滤机制的作用。  相似文献   

3.
As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25‐ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests.  相似文献   

4.
Trophic cascades – the indirect effect of predators on non‐adjacent lower trophic levels – are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri‐trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores’ lineage and host‐plant specialization but are not associated with density‐dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi‐trophic interactions.  相似文献   

5.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

6.
A central problem in the study of species interactions is to understand the underlying ecological and evolutionary mechanisms that shape and are shaped by trait evolution in interacting assemblages. The patterns of interaction among species (i.e. network structure) provide the pathways for evolution and coevolution, which are modulated by how traits affect individual fitness (i.e. functional mechanisms). Functional mechanisms, in turn, also affect the likelihood of an ecological interaction, shaping the structure of interaction networks. Here, we build adaptive network models to explore the potential role of coevolution by two functional mechanisms, trait matching and exploitation barrier, in driving trait evolution and the structure of interaction networks. We use these models to explore how different scenarios of coevolution and functional mechanisms reproduce the empirical network patterns observed in antagonistic and mutualistic interactions and affect trait evolution. Scenarios assuming coevolutionary feedback with a strong effect of functional mechanism better reproduce the empirical structure of networks. Antagonistic and mutualistic networks, however, are better explained by different functional mechanisms and the structure of antagonisms is better reproduced than that of mutualisms. Scenarios assuming coevolution by strong trait matching between interacting partners better explain the structure of antagonistic networks, whereas those assuming strong barrier effects better reproduce the structure of mutualistic networks. The dynamics resulting from the feedback between strong functional mechanisms and coevolution favor the stability of antagonisms and mutualisms. Selection favoring trait matching reduces temporal trait fluctuation and the magnitude of arms races in antagonisms, whereas selection due to exploitation barriers reduces temporal trait fluctuations in mutualisms. Our results indicate that coevolutionary models better reproduce the network structure of antagonisms than those of mutualisms and that different functional mechanisms may favor the persistence of antagonistic and mutualistic interacting assemblages.  相似文献   

7.
Detection of QTL for flowering time in multiple families of elite maize   总被引:1,自引:0,他引:1  
Flowering time is a fundamental quantitative trait in maize that has played a key role in the postdomestication process and the adaptation to a wide range of climatic conditions. Flowering time has been intensively studied and recent QTL mapping results based on diverse founders suggest that the genetic architecture underlying this trait is mainly based on numerous small-effect QTL. Here, we used a population of 684 progenies from five connected families to investigate the genetic architecture of flowering time in elite maize. We used a joint analysis and identified nine main effect QTL explaining approximately 50?% of the genotypic variation of the trait. The QTL effects were small compared with the observed phenotypic variation and showed strong differences between families. We detected no epistasis with the genetic background but four digenic epistatic interactions in a full 2-dimensional genome scan. Our results suggest that flowering time in elite maize is mainly controlled by main effect QTL with rather small effects but that epistasis may also contribute to the genetic architecture of the trait.  相似文献   

8.
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach--integrating different biological scales of trait variation--may provide a better understanding of the mechanisms involved in the structure of communities.  相似文献   

9.
10.
Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions.  相似文献   

11.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

12.
Functional trait diversity is a popular tool in modern ecology, mainly used to infer assembly processes and ecosystem functioning. Patterns of functional trait diversity are shaped by ecological processes such as environmental filtering, species interactions and dispersal that are inherently spatial, and different processes may operate at different spatial scales. Adding a spatial dimension to the analysis of functional trait diversity may thus increase our ability to infer community assembly processes and to predict change in assembly processes following disturbance or land‐use change. Richness, evenness and divergence of functional traits are commonly used indices of functional trait diversity that are known to respond differently to large‐scale filters related to environmental heterogeneity and dispersal and fine‐scale filters related to species interactions (competition). Recent developments in spatial statistics make it possible to separately quantify large‐scale patterns (variation in local means) and fine‐scale patterns (variation around local means) by decomposing overall spatial autocorrelation quantified by Moran's coefficient into its positive and negative components using Moran eigenvector maps (MEM). We thus propose to identify the spatial signature of multiple ecological processes that are potentially acting at different spatial scales by contrasting positive and negative components of spatial autocorrelation for each of the three indices of functional trait diversity. We illustrate this approach with a case study from riparian plant communities, where we test the effects of disturbance on spatial patterns of functional trait diversity. The fine‐scale pattern of all three indices was increased in the disturbed versus control habitat, suggesting an increase in local scale competition and an overall increase in unexplained variance in the post‐disturbance versus control community. Further research using simulation modeling should focus on establishing the proposed link between community assembly rules and spatial patterns of functional trait diversity to maximize our ability to infer multiple processes from spatial community structure.  相似文献   

13.
Niche differentiation and ecological filtering are primary ecological processes that shape community assembly, but their relative importance remains poorly understood. Analyses of the distributions of functional traits can provide insight into the community structure generated by these processes. We predicted the trait distributions expected under the ecological processes of niche differentiation and environmental filtering, then tested these predictions with a dataset of 4672 trees located in nine 1‐ha plots of tropical rain forest in French Guiana. Five traits related to leaf function (foliar N concentration, chlorophyll content, toughness, tissue density and specific leaf area), and three traits related to stem function (trunk sapwood density, branch sapwood density, and trunk bark thickness), as well as laminar surface area, were measured on every individual tree. There was far more evidence for environmental filtering than for niche differentiation in these forests. Furthermore, we contrasted results from species‐mean and individual‐level trait values. Analyses that took within‐species trait variation into account were far more sensitive indicators of niche differentiation and ecological filtering. Species‐mean analyses, by contrast, may underestimate the effects of ecological processes on community assembly. Environmental filtering appeared somewhat more intense on leaf traits than on stem traits, whereas niche differentiation affected neither strongly. By accounting for within‐species trait variation, we were able to more properly consider the ecological interactions among individual trees and between individual trees and their environment. In so doing, our results suggest that the ecological processes of niche differentiation and environmental filtering may be more pervasive than previously believed.  相似文献   

14.
15.
Plant communities vary tremendously in terms of productivity, species diversity, and genetic diversity within species. This vegetation heterogeneity can impact both the likelihood and strength of interactions between plants and insect herbivores. Because altering plant-herbivore interactions will likely impact the fitness of both partners, these ecological effects also have evolutionary consequences. We review several hypothesized and well-documented mechanisms whereby variation in the plant community alters the plant-herbivore interaction, discuss potential evolutionary outcomes of each of these ecological effects, and conclude by highlighting several avenues for future research. The underlying theme of this review is that the neighborhood of plants is an important determinant of insect attack, and this results in feedback effects on the plant community. Because plants exert selection on herbivore traits and, reciprocally, herbivores exert selection on plant-defense traits, variation in the plant community likely contributes to spatial and temporal variation in both plant and insect traits, which could influence macroevolutionary patterns.  相似文献   

16.
森林群落的构建过程及其内在机制是生态学研究的热点问题。植物功能性状是指能够代表植物的生活史策略,反映植物对环境变化响应的一系列植物属性。通过植物功能性状的分布格局及其对环境因素的响应有助于推测群落的构建过程及其内在作用机制。以吉林蛟河21.12hm2温带针阔混交林样地为研究对象,采集并测量了样地内34种木本植物的6种不同的功能性状。以20m×20m的样方为研究单元,通过计算平均成对性状距离指数(mean pairwise trait distance;PW)和平均最近邻体性状距离指数(mean nearest neighbor trait distance;NN)来探讨群落中单个性状和综合性状的分布格局。同时结合地形因子采用回归分析探讨功能性状的分布格局对局域生境变化的响应。基于PW的结果显示:单个性状中除叶面积外,其余性状的分布格局均为聚集分布多于离散分布;基于NN的结果显示:除叶面积和最大树高外,其余性状的分布格局为聚集分布多于离散分布。此外,由6种单个性状组成的综合性状的分布格局同样为聚集分布多于离散分布。基于回归分析的结果显示:森林群落中功能性状的分布格局受到海拔、坡度和坡向等因素的显著影响,而凹凸度的影响则不显著。研究结果表明包括环境过滤和生物相互作用的非随机过程能够影响温带针阔混交林的群落构建过程,中性过程对该区域群落构建过程的影响不显著。  相似文献   

17.
In nature, selection varies across time in most environments, but we lack an understanding of how specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coefficients through changes in trait distributions or individual mean fitness, even when the trait‐absolute fitness relationship remains constant. We apply and extend a regression‐based approach in a population of Soay sheep (Ovis aries) and suggest metrics of environment‐selection relationships that can be compared across studies. We then introduce a novel method that constructs an environmentally structured fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of selection to an ecological variable. Both approaches show positive overall effects of density on viability selection of lamb mass. However, the second approach demonstrates that this relationship is largely driven by effects of density on mean fitness, rather than on the trait‐fitness relationship slope. If such mechanisms of environmental dependence of selection are common, this could have important implications regarding the frequency of fluctuating selection, and how previous selection inferences relate to longer term evolutionary dynamics.  相似文献   

18.
QTL-based evidence for the role of epistasis in evolution   总被引:1,自引:0,他引:1  
  相似文献   

19.
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant–herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore‐mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature.  相似文献   

20.
Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can tighten the ecological relationship between partners, affecting the maintenance of species interactions. Here, we develop a new perspective on so-called `compensated trait loss' and how this type of trait loss may affect the evolutionary dynamics between interacting organisms. We argue that: (1) the frequency of compensated trait loss is currently underestimated because it can go unnoticed as long as ecological interactions are maintained; (2) by analysing known cases of trait loss, specific factors promoting compensated trait loss can be identified and (3) genomic sequencing is a key way forwards in detecting compensated trait loss. We present a comprehensive literature survey showing that compensated trait loss is taxonomically widespread, can involve essential traits, and often occurs as replicated evolutionary events. Despite its hidden nature, compensated trait loss is important in directing evolutionary dynamics of ecological relationships and has the potential to change facultative ecological interactions into obligatory ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号