首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia lamblia is a flagellated protozoan that causes watery diarrhea worldwide but the mechanisms of pathogenicity and the major host defenses against Giardia infection are not well characterized. The recent sequencing of the G. lamblia genome and the development of methods for genome-wide analyses of gene expression have made it possible to characterize the host-parasite interaction more fully. It is becoming clear that the host defense against a Giardia infection involves several different immunological and non-immunological mucosal processes.  相似文献   

2.
To combat parasitism hosts often rely on their immune system, which is the last line of defense. However, the immune system may not always be effective, and other non-immunological defenses might be favored to reduce the cost of parasite infection. Here we report that larvae of the moth Lobesia botrana can rapidly accelerate their development and reach maturity earlier in response to cues perceived at a distance from parasitoids. Such a phenotypically plastic life history shift, induced by the perception of deadly enemies in the environment, is likely to be an adaptive defensive strategy to prevent parasitoid attack, and has important implications in host–parasite dynamics.  相似文献   

3.
Parasites play a key role in regulating wildlife population dynamics, but their impact on the host appears to be context-dependent. Evidence indicates that a synergistic interaction between stress, host condition and parasites is implicated in this phenomenon, but more studies are needed to better understand this context-dependency. With the goal to assess the net effect of two types of chronic stress on various host-parasite interactions, we conducted an experiment in capybaras to evaluate the impact of food restriction and physical restraint on the infection intensity of specific gastrointestinal nematodes and coccidia, and how these stressors affected the growth, body condition, and some immuno-physiological parameters. Our hypothesis was that both forms of stress would result in an alteration in the host-parasite interactions, with deteriorated condition and reduced immunological investment leading to high parasite burdens and vice versa. Stressed capybaras had significantly higher coccidia infection intensities; but among individuals that were smaller, those stressed consistently showed lower helminth burdens than controls. Both stress treatments had a marked negative impact on growth and body condition, but concomitantly they had a significant positive effect on some components of the immune system. Our results suggest, on the one hand, that during prolonged periods of stress capybaras preventatively invest in some components of their immunity, such as innate humoural defenses and cells that combat helminths, which could be considered a stress-dependent prophylaxis. On the other hand, stress was found to cause greater infection intensities of protozoans but lower burdens of nematodes, indicating that the relationship between stress, physiological trade-offs and infection depends on the type of parasite in question. Moreover, both findings might be related in a causal way, as one of the immunological parameters enhanced in stressed capybaras is associated with the immune response to control helminths.  相似文献   

4.
Pathogenic microbes have evolved highly sophisticated mechanisms for colonizing host tissues and evading or deflecting assault by the immune response. The ability of these microbes to avoid clearance prolongs infection, thereby promoting their long-term survival within individual hosts and, through transmission, between hosts. Many pathogens are capable of extensive antigenic changes in the face of the multiple constitutive and dynamic components of host immune defenses. As a result, highly diverse populations that have widely different virulence properties can arise from a single infecting organism (clone). In this review, we consider the molecular and genetic features of antigenic variation and corresponding host-parasite interactions of different pathogenic bacterial, fungal, and protozoan microorganisms. The host and microbial molecules involved in these interactions often determine the adhesive, invasive, and antigenic properties of the infecting organisms and can dramatically affect the virulence and pathobiology of individual infections. Pathogens capable of such antigenic variation exhibit mechanisms of rapid mutability in confined chromosomal regions containing specialized genes designated contingency genes. The mechanisms of hypermutability of contingency genes are common to a variety of bacterial and eukaryotic pathogens and include promoter alterations, reading-frame shifts, gene conversion events, genomic rearrangements, and point mutations.  相似文献   

5.
The extent to which organisms can protect themselves from disease depends on both the immune defenses they maintain and the pathogens they face. At the same time, immune systems are shaped by the antigens they encounter, both over ecological and evolutionary time. Ecological immunologists often recognize these interactions, yet ecological immunology currently lacks major efforts to characterize the environmental, host-independent, antigenic pressures to which all animals are exposed. Failure to quantify relevant diseases and pathogens in studies of ecological immunology leads to contradictory hypotheses. In contrast, including measures of environmental and host-derived commensals, pathogens, and other immune-relevant organisms will strengthen the field of ecological immunology. In this article, we examine how pathogens and other organisms shape immune defenses and highlight why such information is essential for a better understanding of the causes of variation in immune defenses. We introduce the concept of "operative protection" for understanding the role of immunologically relevant organisms in shaping immune defense profiles, and demonstrate how the evolutionary implications of immune function are best understood in the context of the pressures that diseases and pathogens bring to bear on their hosts. We illustrate common mistakes in characterizing these immune-selective pressures, and provide suggestions for the use of molecular and other methods for measuring immune-relevant organisms.  相似文献   

6.
The ecology and evolution of inducible defenses   总被引:20,自引:0,他引:20  
Inducible defenses are responses activated through a previous encounter with a consumer or competitor that confer some degree of resistance to subsequent attacks. While the importance of inducible resistance has long been known in host-parasite interactions, it is only recently that its importance has emerged in other natural systems. Although the structural defenses produced by invertebrates to their competitors and predators are by no means the same as an immune response triggered by parasites, these responses all share the properties of (1) specificity, (2) amplification and (3) memory. This review discusses the following ecological consequences and evolutionary causes of inducible defenses: (1) Inducible defenses render historical factors important in biological interactions and can affect the probability of individual survival and growth, as well as affect population dynamics of consumers in some circumstances. (2) Although the benefits of inducible defenses are often balanced by fitness costs, including reduced growth, reproductive output and survivorship, the role of costs and benefits in the evolution of inducible defenses is by no means clear. A more integrated approach would involve a multivariate analysis of the role of natural selection on the inducible characters of interest, their norms of reaction and correlated fitness characters. (3) The disproportionate representation of inducible, morphological defenses among clonal organisms may be due to both a higher rate of origination and enhanced selection to maintain these defenses in clonal taxa. (4) Inducible defenses should be most common when reliable cues are available, attacks by biological agents are unpredictable, and the fitness gains of defenses are balanced by the costs. An integrated approach to studying inducible defenses would thus combine mechanistic estimates of costs, population-level estimates of defense effectiveness, and genetic estimates of correlations between fitness and inducible characters. This will allow us to estimate rates of evolution in these phenotypically plastic threshold characters.  相似文献   

7.
Tick-host immunology: Significant advances and challenging opportunities   总被引:4,自引:0,他引:4  
Immunological interactions at the tick-host interface involve innate and acquired host defenses against infestation and immunomodulatory countermeasures by the tick. The cellular and molecular immunological bases of these host-parasite relationships are being defined. Acquired resistance to tick infestation involves humoral and cellular immunoregulatory and effector pathways. Ticks respond by suppressing antibody production, complement, and cytokine elaboration by both antigen-presenting cells and specific T-cell subsets. Tick-borne disease-causing agents probably exploit tick suppression of host defenses during transmission and initiation of infection. Because of the public health importance of ticks and Pick-borne diseases, it is crucial that we understand these interactions and exploit them in novel immunological control strategies. Here, Stephen Wikel and Douglas Bergman discuss recent advances in understanding tick-host immunology and propose future studies.  相似文献   

8.
Bradley JE  Jackson JA 《Parasitology》2008,135(7):807-823
Carefully chosen immunological measurements, informed by recent advances in our understanding of the diversity and control of immune mechanisms, can add great interpretative value to ecological studies of infection. This is especially so for co-infection studies, where interactions between species are often mediated via the host's immune response. Here we consider how immunological measurements can strengthen inference in different types of co-infection analysis. In particular, we identify how measuring immune response variables in field studies can help reveal inter-species interactions otherwise obscured by confounding processes operating on count or prevalence data. Furthermore, we suggest that, due to the difficulty of quantifying microbial pathogen communities in field studies, innate responses against broad pathogen types (mediated by pattern response receptors) may be useful quantitative markers of exposure to bacteria and viruses. An ultimate goal of ecological co-infection studies may also be to understand how dynamics within host-parasite assemblages emerge from trade-offs involving different arms of the immune system. We reflect on the phenotypic measures that might best represent levels of responsiveness and bias in immune function. These include mediators associated with different T-helper cell subsets and innate responses controlled by pattern response receptors, such as the Toll-like receptors (TLRs).  相似文献   

9.
Organisms evolve two routes to surviving infections—they can resist pathogen growth (resistance) and they can endure the pathogenesis of infection (tolerance). The sum of these two properties together defines the defensive capabilities of the host. Typically, studies of animal defenses focus on either understanding resistance or, to a lesser extent, tolerance mechanisms, thus providing little understanding of the relationship between these two mechanisms. We suggest there are nine possible pairwise permutations of these traits, assuming they can increase, decrease, or remain unchanged in an independent manner. Here we show that by making a single mutation in the gene encoding a protease, CG3066, active in the melanization cascade in Drosophila melanogaster, we observe the full spectrum of changes; these mutant flies show increases and decreases in their resistance and tolerance properties when challenged with a variety of pathogens. This result implicates melanization in fighting microbial infections and shows that an immune response can affect both resistance and tolerance to infections in microbe-dependent ways. The fly is often described as having an unsophisticated and stereotypical immune response where single mutations cause simple binary changes in immunity. We report a level of complexity in the fly's immune response that has strong ecological implications. We suggest that immune responses are highly tuned by evolution, since selection for defenses that alter resistance against one pathogen may change both resistance and tolerance to other pathogens.  相似文献   

10.
Many parasitologists are betting heavily on proteomic studies to explain biochemical host-parasite interactions and, thus, to contribute to disease control. However, many "parasitoproteomic" studies are performed with powerful techniques but without a conceptual approach to determine whether the host genomic responses during a parasite infection represent a nonspecific response that might be induced by any parasite or any other stress. In this article, a new conceptual approach, based on evolutionary concepts of immune responses of a host to a parasite, is suggested for parasitologists to study the host proteome reaction after parasite invasion. Also, this new conceptual approach can be used to study other host-parasite interactions such as behavioral manipulation.  相似文献   

11.
HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.  相似文献   

12.
Innate immune functions are proposed to develop rapidly post‐hatch in altricial nestlings, compared with adaptive immune defenses that require development of receptor specificity and memory. Studies of ontogenetic changes in altricial birds have been few until relatively recently and often do not encompass the entire developmental period. We examined the patterns of development in constitutive innate and adaptive immune indices in house sparrow nestlings (3, 6, 9 and 12 days (d) post‐hatch), hatch‐year birds and adults. Lysozyme activity significantly decreased with age, likely representing catabolism of maternal investment of lysozyme in the egg albumen. Levels of total IgY (indexing adaptive immune function), as well as agglutination and lysis (indexing innate immune function), increased throughout the nestling period, but were significantly below levels found in fully‐grown birds at the time of fledging. There were no significant differences between hatch‐year birds and adults in these measures, indicating that rapid, full maturation occurs early in the post‐fledging period. In combination with previous studies, these data highlight the importance of sampling fledglings to assess full immune ontogeny and suggest that fledgling birds may be more vulnerable to infection than adults.  相似文献   

13.
Variation in plant secondary metabolite content can arise due to environmental and genetic variables. Because these metabolites are important in modifying a plant’s interaction with the environment, many studies have examined patterns of variation in plant secondary metabolites. Investigations of chemical defenses are often linked to questions about the efficacies of plant defenses and hypotheses on their evolution in different plant guilds. We performed a series of meta-analyses to examine the importance of environmental and genetic sources of variation in secondary metabolites as well as the antiherbivore properties of different classes of defense. We found both environmental and genetic variation affect secondary metabolite production, supporting continued study of the carbon-nutrient balance and growth-differentiation balance hypotheses. Defenses in woody plants are more affected by genetic variation, and herbaceous plant defenses are more influenced by environmental variation. Plant defenses in agricultural and natural systems show similar responses to manipulations, as do plants in laboratory, greenhouse, or field studies. What does such variation mean to herbivores? A comparison of biotic, physical, and chemical defenses revealed the most effective defensive strategy for a plant is biotic mutualisms with ants. Fast-growing plants are most often defended with qualitative defenses and slow-growing plants with quantitative defenses, as the plant apparency and resource availability hypotheses predict. However, we found the resource availability hypothesis provides the best explanation for the evolution of plant defenses, but the fact that there is considerable genetic and environmental variation in defenses indicates herbivores can affect plant chemistry in ecological and evolutionary time.  相似文献   

14.
Antiviral immunity in mammals involves several levels of surveillance and effector actions by host factors to detect viral pathogens, trigger /β interferon production, and to mediate innate defenses within infected cells. Our studies have focused on understanding how these processes are regulated during infection by hepatitis C virus (HCV) and West Nile virus (WNV). Both viruses are members of the Flaviviridae and are human pathogens, but they each mediate a very different disease and course of infection. Our results demonstrate common and unique innate immune interactions of each virus that govern antiviral immunity and demonstrate the central role of /β interferon immune defenses in controlling the outcome of infection.  相似文献   

15.
Drosophila has highly efficient defenses against infection. These include both cellular immune responses, such as the phagocytosis of invading microorganisms, and humoral immune responses, such as the secretion of antimicrobial peptides into the hemolymph [1] [2]. These defense systems are thought to interact, but the nature and extent of these interactions is not known. Here we describe a method for inhibiting phagocytosis in Drosophila blood cells (hemocytes) by injecting polystyrene beads into the body cavity. This treatment does not in itself make a fly susceptible to Escherichia coli infection. However, when performed on flies carrying the mutation immune deficiency (imd), which affects the humoral immune response [3], the treatment results in a striking decrease in resistance to infection. We therefore carried out a sensitized genetic screen to identify immunocompromised mutants by co-injecting beads and E. coli. From this screen, we identified a new gene we have named red shirt and identified the caspase Dredd as a regulator of the Drosophila immune response. The observation that mutants with defects in the humoral immune response are further immunocompromised by blocking phagocytosis, and thus inhibiting the cellular immune response, shows that the Drosophila cellular and humoral immune responses act in concert to fight infection.  相似文献   

16.
Commensal microbes are often required to control viral infection by facilitating host immune defenses. However, we found that this does not hold true for retroviral infection. We report that retrovirus-resistant mice control the pathogen with virus-neutralizing antibodies independently of commensal microbiota. This is in contrast to orthomyxoviruses and arenaviruses, where resistance is ablated in animals depleted of microbiota. Clearly, when it comes to antiviral immunity, the role of the microbiota cannot be generalized.  相似文献   

17.
Polymorphonuclear leukocytes represent primary components of the host's innate immune defenses against fungal infection, suggesting involvement of fungal leukocyte attractants. We have found in various fungi, but not in bacteria or host cells, unstable lipid-like leukocyte chemoattractants, which also induced adherence and degranulation in human neutrophils. Purification from bakers' yeast and structural analyses by electrospray mass spectrometry, (1)H NMR spectroscopy, and chemical synthesis revealed these inflammatory mediators as diacylated ureas, a novel class of unstable lipoids. The N,N'-dipalmitoleyl urea appeared to be the most potent innate immune responses inducing compound eliciting half-maximum neutrophil chemotactic activity at 140 nm. The all-trans isomer, N,N'-dipalmitelaidyl urea, was found to be inactive with respect to stimulation of degranulation in neutrophils, which indicates a Delta(9) cis-double bond to be essential for bioactivity of these diacyl ureas. N,N'-Dipalmitoleyl urea elicited Ca(2+) mobilization in neutrophils, which was found to be pertussis toxin-sensitive and sensitive toward a carboxylmethyltransferase inhibitor, indicating that these diacyl ureas activate leukocytes via a putative Galpha(i)-protein-coupled receptor. Their isolation exclusively from fungi suggests that these lipoids are fungus-specific pathogen-associated molecules that may alert the human innate immunity system to the presence of a fungal infection.  相似文献   

18.
Tumor-induced immune dysfunction   总被引:10,自引:0,他引:10  
Immune system-based approaches for the treatment of malignant disease over the past decades have often focused on cytolytic effector cells such as cytotoxic T lymphocytes (CTL), and natural killer (NK) cells. It has also been demonstrated that tumor-bearing mice can be cured using a wide variety of approaches, some of which involve cytokine-mediated enhancement of CTL and NK cell activity. However, the apparent success in mice stands in contrast to the current situation in the clinic, wherein only a minority of patients have thus far benefited from CTL- or NK cell-based antitumor approaches. The underlying causes of tumor-associated immune suppression of CTL and NK cell activity are discussed, and features of interest shared with HIV infection, leprosy, and rheumatoid arthritis are also be mentioned. Remarkable and very recent observations have shed more light upon the causes of dysfunctional alterations in CTL and NK cells often associated with these diseases, that in turn have suggested new immunotherapeutic approaches for cancer and infectious disease. Received: 20 March 1999 / Accepted: 3 May 1999  相似文献   

19.
The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed "social immunity." One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the number of individuals that forage for resin.  相似文献   

20.
Liu F  Hu W  Cui SJ  Chi M  Fang CY  Wang ZQ  Yang PY  Han ZG 《Proteomics》2007,7(3):450-462
The tegument proteins of schistosome have attracted the most attention in studies of host-parasite interplay, while the host proteins acting at the host-parasite interface remained largely elusive. Here, we undertook a high-throughput proteomic approach to characterize the schistosome-adsorbed host proteins. Fifty five distinct host proteins were confidently identified in S. japonicum samples, including cercaria, schistosomula, adults, eggs, and miracidia, together with tegument and eggshell preparations, of which 23 and 38 host proteins were identified in adult worms and eggs, respectively. Among the schistosome-adsorbed host proteins, host neutrophil elastases were found in the granuloma initiated by schistosome egg deposition, implying that the host innate immune molecules could participate in the granuloma formation for fighting against schistosome invasion, except for the adaptive immune system. In addition, some host proteins, such as proteinase inhibitor and superoxide dismutase, might be utilized by schistosome to counteract or attenuate the host attacks. These parasite-adsorbed host proteins will provide new insights into the host immune responses against schistosome infection, the evasive behavior of the adult worms, and the granuloma formation, which could render an in-depth understanding for the host-parasite interplay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号