首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to survive in an oxygen environment, aerobic organisms have developed numerous mechanisms to protect against oxygen radicals and singlet oxygen. One such mechanism, which appears to have attained particular significance during primate evolution, is the direct scavenging of oxygen radicals, singlet oxygen, oxo-haem oxidants and hydroperoxyl radicals by uric acid. In the present paper we demonstrate that another important 'antioxidant' property of uric acid is the ability to form stable co-ordination complexes with iron ions. Formation of urate-Fe3+ complexes dramatically inhibits Fe3+-catalysed ascorbate oxidation, as well as lipid peroxidation in liposomes and rat liver microsomal fraction. In contrast with antioxidant scavenger reactions, the inhibition of ascorbate oxidation and lipid peroxidation provided by urate's ability to bind iron ions does not involve urate oxidation. Association constants (Ka) for urate-iron ion complexes were determined by fluorescence-quenching techniques. The Ka for a 1:1 urate-Fe3+ complex was found to be 2.4 X 10(5), whereas the Ka for a 1:1 urate-Fe2+ complex was determined to be 1.9 X 10(4). Our experiments also revealed that urate can form a 2:1 complex with Fe3+ with an association constant for the second urate molecule (K'a) of approx. 4.5 X 10(5). From these data we estimate an overall stability constant (Ks approximately equal to Ka X K'a) for urate-Fe3+ complexes of approx. 1.1 X 10(11). Polarographic measurements revealed that (upon binding) urate decreases the reduction potential for the Fe2+/Fe3+ half-reaction from -0.77 V to -0.67 V. Thus urate slightly diminishes the oxidizing potential of Fe3+. The present results provide a mechanistic explanation for our previous report that urate protects ascorbate from oxidation in human blood. The almost saturating concentration of urate normally found in human plasma (up to 0.6 mM) represents 5-10 times the plasma ascorbate concentration, and is orders of magnitude higher than the 'free' iron ion concentration. These considerations point to the physiological significance of our findings.  相似文献   

2.
1. No evidence could be found for production of the superoxide radical, O2-, during autoxidation of ascorbic acid at alkaline pH values. Indeed, ascorbate may be important in protection against O2- genat-d in vivo. 2. Oxidation of ascorbate at pH 10.2 was stimulated by metal ions. Stimulation by Fe2+ was abolished by superoxide dismutase, probably because of generation of O2-- during reduction of O2 by Fe2+, followed by reaction of O2-- with ascorbate. EDTA changed the mechanism of Fe2+-stimulated ascorbate oxidation. 3. Stimulation of ascorbate oxidation by Cu2+ was also decreased by superoxide dismutase, but this appears to be an artifact, since apoenzyme or bovine serum albumin showed similar effects.  相似文献   

3.
Incubation of stimulated neutrophils with sulfhydryl (RSH) compounds or ascorbic acid (ascorbate) results in rapid superoxide (O2-)-dependent oxidation of these reducing agents. Oxidation of RSH compounds to disulfides (RSSR) is faster than the rate of O2- production by the neutrophil NADPH-oxidase, whereas about one ascorbate is oxidized per O2-. Ascorbate is oxidized to dehydroascorbate, which is also oxidized but at a slower rate. Oxidation is accompanied by a large increase in oxygen (O2) uptake that is blocked by superoxide dismutase. Lactoferrin does not inhibit, indicating that ferric (Fe3+) ions are not required, and Fe3+-lactoferrin does not catalyze RSH or ascorbate oxidation. Two mechanisms contribute to oxidation: 1) O2- oxidizes ascorbate or reduced glutathione and is reduced to hydrogen peroxide (H2O2), which also oxidizes the reductants. O2- reacts directly with ascorbate, but reduced glutathione oxidation is mediated by the reaction of O2- with manganese (Mn2+). The H2O2-dependent portion of oxidation is mediated by myeloperoxidase-catalyzed oxidation of chloride to hypochlorous acid (HOCl) and oxidation of the reductants by HOCl. 2) O2- initiates Mn2+-dependent auto-oxidation reactions in which RSH compounds are oxidized and O2 is reduced. Part of this oxidation is due to the RSH-oxidase activity of myeloperoxidase. This activity is blocked by superoxide dismutase but does not require O2- production by the NADPH-oxidase, indicating that myeloperoxidase produces O2- when incubated with RSH compounds. It is proposed that an important role for O2- in the cytotoxic activities of phagocytic leukocytes is to participate in oxidation of reducing agents in phagolysosomes and the extracellular medium. Elimination of these protective agents allows H2O2 and products of peroxidase/H2O2/halide systems to exert cytotoxic effects.  相似文献   

4.
S-Adenosylmethionine (SAM) is protective against a variety of toxic agents that promote oxidative stress. One mechanism for this protective effect of SAM is increased synthesis of glutathione. We evaluated whether SAM is protective via possible antioxidant-like activities. Aerobic Hepes-buffered solutions of Fe2+ spontaneously oxidize and consume O2 with concomitant production of reactive oxygen species and oxidation of substrates to radical products, e.g., ethanol to hydroxyethyl radical. SAM inhibited this oxidation of ethanol and inhibited aerobic Fe2+ oxidation and consumption of O2. SAM did not regenerate Fe2+ from Fe3+ and was not consumed after incubation with Fe2+. SAM less effectively inhibited aerobic Fe2+ oxidation in the presence of competing chelating agents such as EDTA, citrate, and ADP. The effects of SAM were mimicked by S-adenosylhomocysteine, but not by methionine or methylthioadenosine. SAM did not inhibit Fe2+ oxidation by H2O2 and was a relatively poor inhibitor of the Fenton reaction. Lipid peroxidation initiated by Fe2+ in liposomes was associated with Fe2+ oxidation; these two processes were inhibited by SAM. However, SAM did not show significant peroxyl radical scavenging activity. SAM also inhibited the nonenzymatic lipid peroxidation initiated by Fe2+ + ascorbate in rat liver microsomes. These results suggest that SAM inhibits alcohol and lipid oxidation mainly by Fe2+ chelation and inhibition of Fe2+ autoxidation. This could represent an important mechanism by which SAM exerts cellular protective actions and reduces oxidative stress in biological systems.  相似文献   

5.
The presence of yeast cells in the incubation medium prevents the oxidation of ascorbate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.  相似文献   

6.
A cell wall fraction isolated from epicotyls of Vigna angularis,which contained both ionically and covalently bound peroxidases,rapidly oxidized p-coumaric, caffeic and ferulic acids and slowlyoxidized sinapic acid. The oxidation of sinapic acid was greatlyenhanced in the presence of p-coumaric, caffeic or ferulic acid.Ascorbate (20 µM) inhibited the oxidation of ferulic acidby about 70% and completely inhibited the oxidation of p-coumaricand ferulic acids. The cell wall fraction was capable of bindingferulic and sinapic acids but not caffeic acid. p-Coumaric acidbound only slightly to cell walls. The oxidation of p-coumaricand ferulic acids by KCl-washed cell walls was inhibited byabout 60% and 10%, respectively, by 20 µM ascorbate, butthe oxidation of caffeic acid was completely inhibited by ascorbateat less than 20 µM. The oxidation of derivatives of hydroxycinnamicacid by peroxidases released from cell walls by washing with1 M KCl was completely inhibited by ascorbate. These resultssuggest that the inhibition by ascorbate depends on the substituentgroup of the phenyl ring of the derivatives of hydroxycinnamicacid when the oxidation reaction is catalyzed by cell wall-boundperoxidases and that the oxidation of sinapic acid is mediatedby phenoxyl radicals of derivatives of hydroxycinnamic acidother than sinapic acid. (Received December 2, 1993; Accepted March 3, 1994)  相似文献   

7.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

8.
The widely used thiobarbituric acid (TBA) assay for oxidative damage to biomolecules fails in Cu2(+)-containing solutions due to the formation of a cloudy precipitate. The chelation of Cu2+ ions with EDTA or Chelex was investigated. Both prevented precipitate formation, but only Chelex allowed proper color development in the TBA assay. The Chelex modified assay could be adapted to a variety of systems, and was applied to the detection of Cu2+/ascorbate dependent deoxyribose breakdown and oxidative damage in erythrocyte ghosts, lysates and whole cells. Using this method, it was shown that Cu2+/ascorbate caused membrane damage in ghosts but not in whole red blood cells (RBC). Fe3+/ascorbate, on the other hand, caused formation of TBA-reactive products even in whole RBC. When Cu2+ and Fe3+ were presented to isolated hemoglobin as their 1:1 nitrilotriacetate complexes, the protein bound 10-12 cupric ions per molecule, but no ferric ions. It is suggested that oxidative damage catalyzed by copper or iron ions has different cellular targets, determined by the different binding properties of the two metals to various cellular components.  相似文献   

9.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

10.
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.  相似文献   

11.
The gaseous plant hormone ethylene modulates a wide range of biological processes, including fruit ripening. It is synthesized by the ascorbate-dependent oxidation of 1-aminocyclopropyl-1-carboxylate (ACC), a reaction catalyzed by ACC oxidase. Recombinant avocado (Persea americana) ACC oxidase was expressed in Escherichia coli and purified in milligram quantities, resulting in high levels of ACC oxidase protein and enzyme activity. An optimized assay for the purified enzyme was developed that takes into account the inherent complexities of the assay system. Fe(II) and ascorbic acid form a binary complex that is not the true substrate for the reaction and enhances the degree of ascorbic acid substrate inhibition. The K(d) value for Fe(II) (40 nM, free species) and the K(m)'s for ascorbic acid (2.1 mM), ACC (62 microM), and O(2) (4 microM) were determined. Fe(II) and ACC exhibit substrate inhibition, and a second metal binding site is suggested. Initial velocity measurements and inhibitor studies were used to resolve the kinetic mechanism through the final substrate binding step. Fe(II) binding is followed by either ascorbate or ACC binding, with ascorbate being preferred. This is followed by the ordered addition of molecular oxygen and the last substrate, leading to the formation of the catalytically competent complex. Both Fe(II) and O(2) are in thermodynamic equilibrium with their enzyme forms. The binding of a second molecule of ascorbic acid or ACC leads to significant substrate inhibition. ACC and ascorbate analogues were used to confirm the kinetic mechanism and to identify important determinants of substrate binding.  相似文献   

12.
1. The rates of oxidation of various substrates (beta-hydroxybutyrate, succinate, ascorbate + TMPD) and the rate of ATP synthesis in liver mitochondria from active and hibernating ground squirrels were measured. 2. It was shown that the rate of mitochondrial respiration is significantly lower in hibernating animals than in active animals. 3. The degree of inhibition of mitochondrial respiration in hibernating ground squirrels was found to correlate with the length of the respiratory chain fragment involved in the oxidation of a given substrate. 4. The inhibition of mitochondrial respiration in hibernating animals was accompanied by a decrease in the rate of ATP synthesis. 5. The activity of phospholipase A2 in liver mitochondria from hibernating ground squirrels was found to be decreased. The activation of phospholipase A2 by Ca2+ ions eliminated the inhibition of respiration almost completely. 6. It was assumed that the inhibition of mitochondrial respiration during hibernation is (a) related to the suppression of phospholipase A2 activity and (b) caused by the reduced rates of electron transport through the respiratory chain and/or of substrate transport across the mitochondrial membrane.  相似文献   

13.
1. Calcium concentrations in the nanomolar range cause a specific stimulation of the oxidation of pyruvate by isolated mitochondria from rat thymus that is sufficient to account precisely for the stimulation of pyruvate oxidation observed when rat thymocytes are incubated with the mitogens concanavalin A or ionophore A23187. 2. Higher concentrations of Ca2+ (more than 50 nM) inhibit the oxidation of NAD+-linked substrates by rat thymus mitochondria without affecting the oxidation of succinate or ascorbate+ NNN'N'-tetramethyl-p-phenylendiamine. 3. The addition of Ni2+ or Co2+ (2mM) to rat thymocytes prevents the response to concanavalin A at the level of pyruvate oxidation without affecting the stimulation of glycolysis induced by this mitogen. In contrast, the complete metabolic response to the ionophore A23187 is abolished by these ions. Ni2+ and Co2+ interfere with the ability of the ionophore to transport Ca2+ across the plasma membrane. 4. Concanavalin A, but not ionophore A23187, increases the respiratory inhibition induced by Ni2+ and Co2+. 5. These results support the view that mitogens stimulate lymphocyte pyruvate oxidation through an increase in cellular Ca2+ uptake.  相似文献   

14.
In a buffer (Mes) and at a pH (6.5) where Fe2+ is very stable, we have studied the peroxidation of liposomes catalyzed by FeCl2. The liposomes studied, prepared by sonolysis, contained either phosphatidylcholine or 1:1 molar ratio of phosphatidylcholine and phosphatidic acid. The presence of the negatively charged phospholipid causes: 1) rapid Fe2+ oxidation and oxygen consumption; 2) increased generation of lipid hydroperoxides; 3) decreased generation of thiobarbituric acid-reactive materials; 4) very low inhibition of Fe2+ oxidation and lipid hydroperoxide generation by BHT; 5) inhibition of the termination phase of lipid peroxidation at high FeCl2 concentrations. A hypothesis is proposed to explain the results obtained.  相似文献   

15.
Previous work from our laboratory demonstrated that pyridoxal isonicotinoyl hydrazone (PIH) has in vitro antioxidant activity against iron plus ascorbate-induced 2-deoxyribose degradation due to its ability to chelate iron; the resulting Fe(III)-PIH(2) complex is supposedly unable to catalyze oxyradical formation. A putative step in the antioxidant action of PIH is the inhibition of Fe(III)-mediated ascorbate oxidation, which yields the Fenton reagent Fe(II) [Biochim. Biophys. Acta 1523 (2000) 154]. In this work, we demonstrate that PIH inhibits Fe(III)-EDTA-mediated ascorbate oxidation (measured at 265 nm) and the formation of ascorbyl radical (in electron paramagnetic resonance (EPR) studies). The efficiency of PIH against ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation was dose dependent and directly proportional to the period of preincubation of PIH with Fe(III)-EDTA. The efficiency of PIH in inhibiting ascorbate oxidation and ascorbyl radical formation was also inversely proportional to the Fe(III)-EDTA concentration in the media. When EDTA was replaced by the weaker iron ligand nitrilotriacetic acid (NTA), PIH was much more effective in preventing ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation. Moreover, the replacement of EDTA with citrate, a physiological chelator with a low affinity for iron, also resulted in PIH having a higher efficiency in inhibiting iron-mediated ascorbate oxidation and 2-deoxyribose degradation. These results demonstrate that PIH removes iron from EDTA (or from either NTA or citrate), forming an iron-PIH complex that cannot induce ascorbate oxidation effectively, thus inhibiting iron-mediated oxyradical formation. These results are of pharmacological relevance because PIH has been considered for experimental chelating therapy in iron-overload diseases.  相似文献   

16.
Palladium ions, administered as PdSO4, markedly affect the incorporation of L-[3,4-3H2] proline into non-dialyzable fractions in 10-day chick embryo cartilage explants with a 55-65% reduction in the concentration range 0.06-0.6 mM. Under these conditions the synthesis of [3H]hydroxyproline was nearly completely inhibited. Experiments with prolyl hydroxylase (EC 1.14.11.2) indicated a strong irreversible inhibition of the enzyme with a competition between Fe2+ and Pd2+. The Ki for the inhibition was 0.02 mM. Pd2+-treated enzyme remained inactive after extensive dialysis. These studies suggest that Pd2+ may inhibit collagen synthesis by replacing Fe2+ in the active site of prolyl hydroxylase and forming strong complexes with the enzyme. These studies also point to a potential mechanism of Pd2+ toxicity.  相似文献   

17.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

18.
1. In the presence of dihydroxyfumarate, horseradish peroxidase catalyses the conversion of p-coumaric acid into caffeic acid at pH 6. This hydroxylation is completely inhibited by superoxide dismutase. 2. Dihydroxyfumarate cannot be replaced by ascorbate H2O2, NADH, cysteine or sulphite. Peroxidase can be replaced by high (10 mM) concentrations of FeSO4, but this reaction is almost unaffected by superoxide dismutase. 3. Hydroxylation by the peroxidase/dihydroxyfumarate system is completely inhibited by low concentrations of Mn2+ or Cu2+. It is proposed that this is due to the ability of these metal ions to react with the superoxide radical O2--. 4. Hydroxylation is partially inhibited by mannitol, Tris or ethanol and completely inhibited by formate. This seems to be due to the ability of these reagents to react with the hydroxyl radical -OH. 5. It is concluded that O2-- is generated during the oxidation of dihydroxyfumarate by peroxidase and reacts with H2O2 to produce hydroxyl radicals, which then convert p-coumaric acid into caffeic acid.  相似文献   

19.
Fe(Ⅱ)对漆酶催化活性的影响   总被引:4,自引:0,他引:4  
以2,2-连氮-双(3-乙基苯并噻唑-6-磺酸)(ABTS)为底物,在pH4.5的条件下,用分光光度法考察了Fe^2 离子存在下的漆酶催化氧化反应,发现Fe^2 离子对漆酶的催化活性显示出抑制作用,并进一步探讨了其抑制特征,抑制位点和作用方式。结果表明,Fe^2 离子对漆酶催化活性抑制属竞争性抑制过程,抑制作用是通过还原ABTS来实现的。  相似文献   

20.
Fenton chemistry. Amino acid oxidation   总被引:9,自引:0,他引:9  
The oxidation of amino acids by Fenton reagent (H2O2 + Fe(II] leads mainly to the formation of NH+4, alpha-ketoacids, CO2, oximes, and aldehydes or carboxylic acids containing one less carbon atom. Oxidation is almost completely dependent on the presence of bicarbonate ion and is stimulated by iron chelators at levels which are substoichiometric with respect to the iron concentration but is inhibited at higher concentrations. The stimulatory effect of chelators is not due merely to solubilization of catalytically inactive polymeric forms of Fe(OH)3 nor to the conversion of Fe(II) to complexes incapable of scavenging hydroxyl radicals. The results suggest that an iron chelate and another as yet unidentified form of iron are both required for maximal rates of amino acid oxidation. The metal ion-catalyzed oxidation of amino acids is likely a "caged" process, since the oxidation is not inhibited by hydroxyl radical scavengers, and the relative rates of oxidation of various amino acids by the Fenton system as well as the distribution of products formed (especially products of aromatic amino acids) are significantly different from those reported for amino acid oxidation by ionizing radiation. Several iron-binding proteins, peptides, and hemoglobin degradation products can replace Fe(II) or Fe(III) in the bicarbonate-dependent oxidation of amino acids. In view of their ability to sequester metal ions and their susceptibility to oxidation by H2O2 in the presence of physiological concentrations of bicarbonate, amino acids may serve an important role in antioxidant defense against tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号