共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA polymerase epsilon (Pol epsilon) from Saccharomyces cerevisiae consists of four subunits (Pol2, Dpb2, Dpb3, and Dpb4) and is essential for chromosomal DNA replication. Biochemical characterizations of Pol epsilon have been cumbersome due to protease sensitivity and the limited amounts of Pol epsilon in cells. We have developed a protocol for overexpression and purification of Pol epsilon from S. cerevisiae. The native four-subunit complex was purified to homogeneity by conventional chromatography. Pol epsilon was characterized biochemically by sedimentation velocity experiments and gel filtration experiments. The stoichiometry of the four subunits was estimated to be 1:1:1:1 from colloidal Coomassie-stained gels. Based on the sedimentation coefficient (11.9 S) and the Stokes radius (74.5 A), a molecular mass for Pol epsilon of 371 kDa was calculated, in good agreement with the calculated molecular mass of 379 kDa for a heterotetramer. Furthermore, analytical equilibrium ultracentrifugation experiments support the proposed heterotetrameric structure of Pol epsilon. Thus, both DNA polymerase delta and Pol epsilon are purified as monomeric complexes, in agreement with accumulating evidence that Pol delta and Pol epsilon are located on opposite strands of the eukaryotic replication fork. 相似文献
2.
Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. 总被引:5,自引:3,他引:5 下载免费PDF全文
T A Kunkel R K Hamatake J Motto-Fox M P Fitzgerald A Sugino 《Molecular and cellular biology》1989,9(10):4447-4458
We have determined the fidelity of DNA synthesis by DNA polymerase I (yPol I) from Saccharomyces cerevisiae. To determine whether subunits other than the polymerase catalytic subunit influence fidelity, we measured the accuracy of yPol I purified by conventional procedures, which yields DNA polymerase with a partially proteolyzed catalytic subunit and no associated primase activity, and that of yPol I purified by immunoaffinity chromatography, which yields polymerase having a single high-molecular-weight species of the catalytic subunit, as well as three additional polypeptides and DNA primase activity. In assays that score polymerase errors within the lacZ alpha-complementation gene in M13mp2 DNA, yPol I and the yPol I-primase complex produced single-base substitutions, single-base frameshifts, and larger deletions. For specific errors and template positions, the two forms of polymerase exhibited differences in fidelity that could be as large as 10-fold. Nevertheless, results for the overall error frequency and the spectrum of errors suggest that the yPol I-DNA primase complex is not highly accurate and that, just as for the polymerase alone, its fidelity is not sufficient to account for a low spontaneous mutation rate in vivo. The specificity data also suggest models to explain -1 base frameshifts in nonrepeated sequences and certain complex deletions by a direct repeat mechanism involving aberrant loop-back synthesis. 相似文献
3.
DNA polymerase delta (Pol delta) from Saccharomyces cerevisiae consists of three subunits, Pol3 (125 kDa), Pol31 (55 kDa), and Pol32 (40 kDa), present at a 1:1:1 stoichiometry in purified preparations. Previously, based on gel filtration studies of Pol delta, we suggested that the enzyme may be a dimer of catalytic cores, with dimerization mediated by the Pol32 subunit (Burgers, P. M., and Gerik, K. J. (1998) J. Biol. Chem. 273, 19756-19762). We now report on extensive gel filtration, glycerol gradient sedimentation, and analytical equilibrium centrifugation studies of Pol delta and of several subassemblies of Pol delta. The hydrodynamic parameters of these assemblies indicate that (i) Pol32 is a rod-shaped protein with a frictional ratio f/f(0) = 2.22; (ii) any complex containing Pol32 also has an extremely asymmetric shape; (iii) the results of these studies are independent of concentration (varied between 0.1-20 microm); (iv) all complexes are monomeric under the conditions studied (up to 20 microm). Moreover, a two-hybrid analysis of the Pol32 subunit did not detect a Pol32-Pol32 interaction in vivo. Therefore, we conclude that the assembly structure of Pol delta is that of a monomer. 相似文献
4.
DNA polymerase III from Saccharomyces cerevisiae. I. Purification and characterization 总被引:24,自引:0,他引:24
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction. 相似文献
5.
Purification of DNA polymerase II, a distinct DNA polymerase, from Saccharomyces cerevisiae 总被引:6,自引:0,他引:6
Yeast DNA polymerases I and III have been well characterized physically, biochemically, genetically and immunologically. DNA polymerase II is present in very small amounts, and only partially purified preparations have been available for characterization, making comparison with DNA polymerases I and III difficult. Recently, we have shown that DNA polymerases II and III are genetically distinct (Sitney et al., 1989). In this work, we show that polymerase II is also genetically distinct from polymerase I, since polymerase II can be purified in equal amounts from wild-type and mutant strains completely lacking DNA polymerase I activity. Thus, yeast contains three major nuclear DNA polymerases. The core catalytic subunit of DNA polymerase II was purified to near homogeneity using a reconstitution assay. Two factors that stimulate the core polymerase were identified and used to monitor activity during purification and analysis. The predominant species of the most highly purified preparation of polymerase II is 132,000 Da. However, polymerase activity gels suggest that the 132,000-Da form of DNA polymerase II is probably an active proteolytic fragment derived from a 170,000-Da protein. The highly purified polymerase fractions contain a 3'----5'-exonuclease activity that purifies at a constant ratio with polymerase during the final two purification steps. However, DNA polymerase II does not copurify with a DNA primase activity. 相似文献
6.
Bebenek K Garcia-Diaz M Patishall SR Kunkel TA 《The Journal of biological chemistry》2005,280(20):20051-20058
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends. 相似文献
7.
Shimizu K Hashimoto K Kirchner JM Nakai W Nishikawa H Resnick MA Sugino A 《The Journal of biological chemistry》2002,277(40):37422-37429
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain. 相似文献
8.
Purification of a DNA primase activity from the yeast Saccharomyces cerevisiae. Primase can be separated from DNA polymerase I 总被引:6,自引:0,他引:6
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold. 相似文献
9.
Washington MT Johnson RE Prakash S Prakash L 《The Journal of biological chemistry》1999,274(52):36835-36838
The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors. 相似文献
10.
DNA polymerase III from Saccharomyces cerevisiae. II. Inhibitor studies and comparison with DNA polymerases I and II 总被引:10,自引:0,他引:10
The newly identified yeast DNA polymerase III was compared to DNA polymerases I and II and the mitochondrial DNA polymerase. Inhibition by aphidicolin (I50) of DNA polymerases I, II, and III was 4, 6, and 0.6 micrograms/ml, respectively. The mitochondrial enzyme was insensitive to the drug. N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate strongly inhibited DNA polymerase I (I50 = 0.3 microM), whereas DNA polymerase III was less sensitive (I50 = 80 microM). Conditions that allowed proteolysis to proceed during the preparation of extracts converted DNA polymerase II from a sensitive form (I50 = 2.4 microM) to a resistant form (I50 = 2 mM). The mitochondrial DNA polymerase is insensitive (I50 greater than 5 mM). With most other inhibitors tested (N-ethylmaleimide, heparin, salt) only small differences were observed between the three nuclear DNA polymerases. Polyclonal antibodies to DNA polymerase III did not inhibit DNA polymerases I and II, nor were those polymerases recognized by Western blotting. Monoclonal antibodies to DNA polymerase I did not crossreact with DNA polymerases II and III. The results show that DNA polymerase III is distinct from DNA polymerase I and II. 相似文献
11.
The herpes simplex virus type I DNA polymerase. Polypeptide structure and antigenic domains 总被引:7,自引:0,他引:7
Polyclonal antibodies responding specifically to the N-terminal, central and C-terminal polypeptide domains of the herpes simplex virus type I (HSV-1) DNA polymerase of strain Angelotti were generated. Each of the five different rabbit antisera reacted specifically with a viral 132 +/- 5-kDa polypeptide as shown by immunoblot analysis. Enzyme binding and inhibition studies revealed that antibodies raised to the central and the C-terminal domains of the protein inhibited the polymerizing activity by 70-90%, respectively, which is well in line with the proposed site of the catalytic center of the enzyme and with the possible involvement of these polypeptide chains in DNA-protein interactions. In agreement with this, antibodies directed towards the N-terminal domain bound to the enzyme without effecting the enzymatic activity. The strong binding but low inhibitory properties of antibodies directed to the polypeptide region between residues 1072 and 1146 confirms previous suggestions that these C-terminal sequences, which share no homology to the Epstein-Barr virus DNA polymerase, are less likely involved in the building of the polymerase catalytic site. Antibodies, raised to the very C terminus of the polymerase (EX3), were successfully used to identify a single 132 +/- 5-kDa polypeptide, which coeluted with the HSV DNA polymerase activity during DEAE-cellulose chromatography, and were further shown to precipitate a major viral polypeptide of identical size. From the presented data it can be concluded that the native enzyme consists of a single polypeptide with a size predicted from the long open reading frame of the HSV-1 DNA polymerase gene. 相似文献
12.
13.
14.
A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae 总被引:9,自引:0,他引:9
Biochemical fractionation of the yeast Saccharomyces cerevisiae has revealed a novel DNA primase activity that copurifies with the major DNA polymerase activity. In the presence of RNA precursors and single-stranded DNA (poly(dT), M13), the DNA primase synthesizes discrete length oligoribonucleotides (apparent length, 8-12 nucleotides) as well as longer RNA chains that appear to be multiples of a modal length of 11-12 nucleotides. When DNA precursors are also present, the oligoribonucleotides are utilized by the accompanying DNA polymerase as primers for DNA synthesis. Copurification of these two enzymatic activities suggests their association in a physical complex which may function in the synthesis of Okazaki fragments at chromosomal replication forks. 相似文献
15.
Asturias FJ Cheung IK Sabouri N Chilkova O Wepplo D Johansson E 《Nature structural & molecular biology》2006,13(1):35-43
The structure of the multisubunit yeast DNA polymerase epsilon (Pol epsilon) was determined to 20-A resolution using cryo-EM and single-particle image analysis. A globular domain comprising the catalytic Pol2 subunit is flexibly connected to an extended structure formed by subunits Dpb2, Dpb3 and Dpb4. Consistent with the reported involvement of the latter in interaction with nucleic acids, the Dpb portion of the structure directly faces a single cleft in the Pol2 subunit that seems wide enough to accommodate double-stranded DNA. Primer-extension experiments reveal that Pol epsilon processivity requires a minimum length of primer-template duplex that corresponds to the dimensions of the extended Dpb structure. Together, these observations suggest a mechanism for interaction of Pol epsilon with DNA that might explain how the structure of the enzyme contributes to its intrinsic processivity. 相似文献
16.
17.
The "killer" plasmid and a larger double-stranded RNA plasmid of yeast exist in intracellular virion particles. Purification of these particles from a diploid killer strain of yeast (grown into stationary growth on ethanol) resulted in co-purification of a DNA-independent RNA polymerase activity. This activity incorporates and requires all four ribonucleoside triphosphates and will not act on deoxyribonucleoside triphosphates. The reaction requires magnesium, is inhibited by sulfhydryl-oxidizing reagents and high concentrations of monovalent cation, but is insensitive to DNase, alpha-amanitin, and actinomycin D. Pyrophosphate inhibits the reaction as does ethidium bromide. Exogenous nucleic acids have no effect on the reaction. The product is mostly single-stranded RNA, some of which is released from the enzymatically active virions. 相似文献
18.
DNA polymerase III of the yeast Saccharomyces cerevisiae has been reported to be encoded at the CDC2 locus based on two observations. First, the CDC2 gene has homology to known DNA polymerase genes [Boulet et al. (1989) EMBO J. 8, 1849-1854], and second, the mutants cdc2-1 and cdc2-2 yield little or no DNA polymerase III activity in vitro [Boulet et al. (1989); Sitney et al. (1989) Cell 56, 599-605]. We describe here the isolation of temperature-sensitive DNA polymerase III from cdc2-2 strains. Our results provide direct experimental confirmation of the previously inferred gene/enzyme relationship and verify the conclusion that DNA polymerase III is required to replicate the genome. We isolated DNA polymerase III from two cdc2-2 strains, one containing the wild-type allele for DNA polymerase I (CDC17) and the other a mutant DNA polymerase I allele (cdc17-1). Yields from cdc2-2 cells of both DNA polymerase III activity and an associated 3'-5'-exonuclease activity [exonuclease III; Bauer et al. (1988) J. Biol. Chem. 263, 917-924] were decreased relative to yields from CDC2 cells. DNA polymerase III activity from cdc2-2 strains is thermolabile, displaying at least a 4-fold reduction in half-life at 44 degrees C. The activity is also labile at 37 degrees C, a temperature which is restrictive for growth of cdc2-2 but not CDC2 strains. At 23 degrees C, a temperature which is permissive for growth of both cdc2-2 and CDC2 strains, the mutant and wild-type DNA polymerase III activities display equal stability. These observations provide a demonstrable biochemical basis for the thermosensitive phenotype of cdc2-2 cells. 相似文献
19.
Summary Mitochondrial mutants of indstrial yeast strains with different flocculation efficiencies were assayed for involvement of mitochondrial DNA (mtDNA) in flocculation. Most of the mutants exhibited a decreased flocculation rate in comparison to that of the wild strains. The mtDNA of a moderately flocculating wild strain was characterized by restriction enzyme analysis and by the localization of several mitochondrial genes. This molecular analysis of mitochondrial mutants revealed two areas of mtDNA involvement in flocculation, namely a region of the subunit 9 of the ATPase gene (oli 1) and a region of the subunit 3 of the cytochrome-c-oxidase gene (oxi 2). 相似文献
20.
G A Bitter 《Analytical biochemistry》1983,128(2):294-301
A rapid procedure for the purification of RNA polymerase II from Saccharomyces cerevisiae is described. Total RNA polymerase activity was solubilized from whole cells by sonication in 0.32 M (NH4)2SO4 and RNA polymerase II purified by polyethylenimine fractionation, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, DEAE-Sephadex, and phosphocellulose. The procedure may be completed in 2.5 days and the resultant enzyme is judged to be greater than 90% pure. 相似文献