首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

2.
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has been known as an aerobe that respires on iron and sulfur. Here we show that the bacterium could chemolithoautotrophically grow not only on H(2)/O(2) under aerobic conditions but also on H(2)/Fe(3+), H(2)/S(0), or S(0)/Fe(3+) under anaerobic conditions. Anaerobic respiration using Fe(3+) or S(0) as an electron acceptor and H(2) or S(0) as an electron donor serves as a primary energy source of the bacterium. Anaerobic respiration based on reduction of Fe(3+) induced the bacterium to synthesize significant amounts of a c-type cytochrome that was purified as an acid-stable and soluble 28-kDa monomer. The purified cytochrome in the oxidized form was reduced in the presence of the crude extract, and the reduced cytochrome was reoxidized by Fe(3+). Respiration based on reduction of Fe(3+) coupled to oxidation of a c-type cytochrome may be involved in the primary mechanism of energy production in the bacterium on anaerobic iron respiration.  相似文献   

3.
The iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, was cultivated on a medium without ferrous iron. Molecular hydrogen and air were supplied to the medium. It was found that A. ferrooxidans could grow with hydrogen in the pH range between 2.0 and 3.5. A trickle-bed contactor was used to increase the dissolution rate of hydrogen. The doubling time was increased and the cell concentration reached 4.0 x 10(9) cells ml(-1) after 6 days. When the cells taken from the hydrogen medium were transferred back into the medium containing ferrous iron, the growth rate and the iron-oxidizing ability were the same as the predictions assuming that the microorganism grown with hydrogen was A. ferrooxidans.  相似文献   

4.
枯草芽孢杆菌Bacillus subtilis B47菌株为番茄内生细菌, 也是玉米小斑病拮抗菌, 能产生对玉米小斑病菌有强烈抑制作用的抗菌物质。以B47菌株发酵液的无菌滤液对玉米小斑病菌的抗菌活性为检测指标, 测定B47菌株产抗菌物质培养所需的最佳碳、氮源和无机盐, 并通过正交试验法对该菌株产抗菌物质的培养基配方和摇瓶发酵条件进行优化。研究结果表明, B47菌株产抗菌物质最佳碳、氮源和无机盐分别为蔗糖、酵母浸膏和MgSO4·7H2O, 最优培养基是YSB (Yeast extract-sucrose-beef extract)培养基, 其配方为: 蔗糖2%, 酵母浸膏2%, 牛肉浸膏1.5%, MgSO4?7H2O 0.06%, FeSO4·7H2O 0.000 9%, 最优发酵条件组合为: 30 °C, pH 7.0, 170 r/min摇床培养6 d, 接种量为1%, 装液量为40 mL/200 mL。  相似文献   

5.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.  相似文献   

6.
氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)的生物控制矿化作用可以使其在胞内形成黑色电子致密颗粒—磁小体。本研究利用生物信息学方法对氧化亚铁硫杆菌标准菌株ATCC 23270的全基因组进行分析, 并通过Real-time PCR技术研究氧化亚铁硫杆菌中与磁小体形成相关的mpsA、magA、thy和mamB四个基因在不同亚铁浓度刺激下的差异表达, 结果发现它们在转录层面的表达量受亚铁浓度的影响, 当亚铁浓度达到150~200 mmol/L范围内达到最高表达,这对进一步深入研究氧化亚铁硫杆菌中磁小体的形成机理有积极的意义。  相似文献   

7.
As part of a study on the microbiology of chlorate reduction, several new dissimilatory chlorate-reducing bacteria were isolated from a broad diversity of environments. One of these, strain CKB, was selected for a more complete characterization. Strain CKB was enriched and isolated from paper mill waste with acetate as the sole electron donor and chlorate as the sole electron acceptor. Strain CKB is a completely oxidizing, non-fermentative, Gram-negative, facultative anaerobe. Cells of strain CKB are 0.5 x 2 microm and are highly motile, with a single polar flagellum. In addition to acetate, strain CKB can use propionate, butyrate, lactate, succinate, fumarate, malate or yeast extract as electron donors, with chlorate as the sole electron acceptor. Strain CKB can also couple chlorate reduction to the oxidation of ferrous iron, sulphide, or the reduced form of the humic substances analogue 2,6-anthrahydroquinone disulphonate. Fe(II) is oxidized to insoluble amorphous Fe(II) oxide, whereas sulphide is oxidized to elemental sulphur. Growth is not associated with this metabolism, even when small quantities of acetate are added as a potential carbon source. In addition to chlorate, strain CKB can also couple acetate oxidation to the reduction of oxygen or perchlorate. Chlorate is completely reduced to chloride. Strain CKB has an optimum temperature of 35 degrees C, a pH optimum of 7.5 and a salinity optimum of 1% NaCl. Strain CKB can grow in chlorate and perchlorate concentrations of 80 or 20 mM respectively. Under anaerobic conditions, strain CKB can dismutate chlorite into chloride and O2, and is only the second organism shown to be capable of this metabolism. Oxidized minus reduced spectra of whole-cell suspensions of strain CKB showed absorbance maxima at 423, 523 and 552nm, which are indicative of the presence of c-type cytochrome(s). Analysis of the complete sequence of the 16S rDNA indicates that strain CKB is a member of the beta subclass of the Proteobacteria. The phototroph Rhodocyclus tenuis is the closest known relative. When tested, strain CKB could not grow by phototrophy and did not contain bacteriochlorophyll. Phenotypically and phylogenetically, strain CKB differs from all other described bacteria and represents the type strain of a new genus and species.  相似文献   

8.
Acidithiobacillus ferrooxidans is an acidophilic chemolithotrophic bacterium that can grow in the presence of either a weak reductant, Fe(2+), or reducing sulfur compounds that provide more energy for growth than Fe(2+). Here we first review the latest findings about the uphill electron transfer pathway established in iron-grown A. ferrooxidans, which has been found to involve a bc(1) complex. We then provide evidence that this bc(1) complex cannot function in the forward direction (exergonic reaction), even with an appropriate substrate. A search for the sequence of the three redox subunits of the A. ferrooxidans bc(1) complex (strain ATCC 19859) in the complete genome sequence of the A. ferrooxidans ATCC 23270 strain showed the existence of two different bc(1) complexes in A. ferrooxidans. Cytochrome b and Rieske protein sequence comparisons allowed us to point out some sequence particularities of these proteins in A. ferrooxidans. Lastly, we discuss the possible reasons for the existence of two different "classical" bc(1) complexes and put forward some suggestions as to what role these putative complexes may play in this acidophilic chemolithotrophic bacterium.  相似文献   

9.
The iron-oxidizing activity of a moderately thermophilic iron-oxidizing bacterium, strain TI-1, was located in the plasma membrane. When the strain was grown in Fe2+ (60 mM)-salts medium containing yeast extract (0.03%), the plasma membrane had iron-oxidizing activity of 0.129 mumol O2 uptake/mg/min. Iron oxidase was solubilized from the plasma membrane with 1.0% n-octyl-beta-D-glucopyranoside (OGL) containing 25% (v/v) glycerol (pH 3.0) and purified 37-fold by a SP Sepharose FF column chromatography. Iron oxidase solubilized from the plasma membrane was stable at pH 3.0, but quite unstable in the buffer with the pH above 6.0 or below 1.0. The optimum pH and temperature for iron oxidation were 3.0 and 55 degrees C, respectively. Solubilized enzyme from the membrane showed absorption peaks characteristic of cytochromes a and b. Cyanide and azide, inhibitors of cytochrome c oxidase, completely inhibited iron-oxidizing activity at 100 microM, but antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) and myxothiazol, inhibitors of electron transport systems involved with cytochrome b, did not inhibit enzyme activity at 10 microM. The absorption spectrum of the most active enzyme fraction from SP Sepharose FF column chromatography (4.76 mumol O2 uptake/mg/min) compared with lower active fractions from the chromatography (0.009 and 2.10 mumol O2 uptake/mg/min) showed a large alpha-peak of cytochrome a at 602 nm and a smaller alpha-peak of cytochrome b at 560 nm. The absorption spectrum of pyridine ferrohemochrome prepared from the most highly purified enzyme showed an alpha-peak characteristic of heme a at 587 nm, but not the alpha-peak characteristic of heme c at 550 nm. The cytochrome a, but not cytochrome b, in the most highly purified enzyme fraction was reduced by the addition of ferrous iron at pH 3.0, indicating that electrons from Fe2+ were transported to cytochrome a, but not cytochrome b. These results strongly suggest that cytochrome a, but not cytochromes b and c, is involved in iron oxidation of strain TI-1.  相似文献   

10.
K Kamimura  S Wakai  T Sugio 《Microbios》2001,105(412):141-152
The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis.  相似文献   

11.
从云南省腾冲热泉酸性泥土样品中分离得到一株好氧嗜酸异养细菌Teng-A。菌株Teng-A细胞大小0.6~0.8μm×1.0~1.5μm,单生或成链状排列,革兰氏染色反应为阴性,有周生鞭毛,不产芽孢,该菌适宜的生长温度为29~33℃、pH为3.0~4.0,可以利用许多有机物生长,但不能利用Fe(Ⅱ)、S、Na2S2O3、K2S4O6等为能源生长。菌株Teng-A基因组DNA的(G C)mol%为69.6mol%,其16S rRNA基因与Acidiphilium属菌种的16S rRNA基因的最高相似性大于99%。根据形态学、生理生化特点及系统发育分析表明,菌株Teng-A是Acidiphilium属的一个新成员,崭定名为Acidiphilium sp.strainTeng-A。厌氧条件下,菌株Teng-A可以葡萄糖或H2为电子供体,将Fe(Ⅲ)还原为Fe(Ⅱ),还原速率分别为11.56mg/L.day与15.34mg/L.day。菌株Teng-A与Acidithiobacillus ferrooxidansLJ-1和Leptospirilum ferriphilum LJ-2共同培养,前3dFe2 氧化速度分别为0.44g/L.day和0.41g/L.day,比LJ-1(0.64g/L.day)和LJ-2(0.60g/L.day)单独培养时氧化Fe(Ⅱ)的速率稍慢,但当培养时间超过5d时,Fe(Ⅱ)最终被全部氧化,并且发现在共培养时,Fe(Ⅱ)氧化生成的沉淀物的形态不同于At.ferrooxidans和L.ferriphilum单独培养时产生的沉淀物的形态。最后讨论了Acidiphilium对生物浸矿和生物成矿作用的影响。  相似文献   

12.
A diazotrophic, acidophilic, iron-oxidizing bacterium, Leptospirillum ferrooxidans, known to be difficult to cultivate, was isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. Here, we report the complete genome sequence of a cultured strain, C2-3.  相似文献   

13.
An acidophilic sulfur-oxidizing bacterium was isolated from seawater, and designated as strain SH. Strain SH was a Gram-negative, rod-shaped and motile bacterium, which had an optimum temperature and pH value for growth of 30 degrees C and 4.0, respectively. The mol% guanine plus cytosine of the DNA was 46.0. Chemolithotrophic growth was observed with elemental sulfur and tetrathionate at pH 4.0, and was not observed with ferrous ion. The isolate was able to utilize carbon dioxide as a carbon source, and was unable to grow heterotrophically with yeast extract or glucose. The growth of strain SH was activated in medium supplemented with NaCl. However, LiCl and KCl did not sustain the growth of strain SH. The results indicate that strain SH was an acidophilic, halophilic, and obligately chemolithotrophic sulfur-oxidizing bacterium. Phylogenetic analysis based on 16S rDNA sequences indicated that strain SH had a close relationship to Acidithiobacillus thiooxidans. The oxidizing activities of sulfur and sulfite with resting cells were stimulated not only by the addition of NaCl, but also by KCl and LiCl. The oxidation of sulfite was inhibited by ionophores, carbonyl cyanide- m-chlorophenylhydrazone (CCCP), and monensin, and respiratory inhibitors, KCN and 2-heptyl-4-hydroxy-quinoline-N-oxode (HQNO).  相似文献   

14.
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.  相似文献   

15.
16.
Strain IVIC-Pb9, unlike other strains ofParacoccidioides brasiliensis, cannot grow on a simple basal medium and requires the addition of casein hydrolyzate or yeast extract. The present study shows that this requirement is limited to very low concentrations of methionine and that methionine concentrations above 0.01% inhibit growth. The levels of glucose and organic nitrogen required for maximum rate of growth of strain IVIC-Pb9 on both basal medium and GGY medium composed of glucose, glycine and yeast extract were also determined. An evaluation of the suitability of the GGY medium revealed that its composition, as commonly used to grow dimorphic fungi, is not adequate to obtain a maximum rate of growth with strain IVIC-Pb9 ofP. brasiliensis.  相似文献   

17.
An anaerobic bacterium, strain DP7, was isolated from human feces in mineral medium with formate and 0.02% yeast extract as energy and carbon source. This rod-shaped motile bacterium used pyruvate, lactate, formate, hydrogen, butyrate, and ethanol as electron donor for sulfite reduction. Other electron acceptors such as thiosulfate, nitrate and fumarate stimulated growth in the presence of 0.02% yeast extract and formate. Acetate was the only product during fermentative growth on pyruvate. Six mol of pyruvate were fermented to 7 mol of acetate. 13C-NMR labeling experiments showed homoacetogenic 13C-CO2 incorporation into acetate. The pH and temperature optimum of fermentative growth on pyruvate was 7.4 and 37 degrees C, respectively. The growth rate under these conditions was approximately 0.10 h(-1). Strain DP7 was identified as a new strain of Desulfitobacterium frappieri on the basis of 16S rRNA sequence analysis (99% similarity) and DNA-DNA hybridization (reassociation value of 83%) with Desulfitobacterium frappieri TCE1. In contrast to described Desulfitobacterium strains, the newly isolated strain has not been isolated from a polluted environment and did not use chloroethenes or chlorophenols as electron acceptor.  相似文献   

18.
A highly mercury-resistant strain Acidithiobacillus ferrooxidans MON-1, was isolated from a culture of a moderately mercury-resistant strain, A. ferrooxidans SUG 2-2 (previously described as Thiobacillus ferrooxidans SUG 2-2), by successive cultivation and isolation of the latter strain in a Fe2+ medium with increased amounts of Hg2+ from 6 microM to 20 microM. The original stain SUG 2-2 grew in a Fe2+ medium containing 6 microM Hg2+ with a lag time of 22 days, but could not grow in a Fe2+ medium containing 10 microM Hg2+. In contrast, strain MON-1 could grow in a Fe2+ medium containing 20 microM Hg2+ with a lag time of 2 days and the ability of strain MON-1 to grow rapidly in a Fe2+ medium containing 20 microM Hg2+ was maintained stably after the strain was cultured many times in a Fe2+ medium without Hg2+. A similar level of NADPH-dependent mercury reductase activity was observed in cell extracts from strains SUG 2-2 and MON-1. By contrast, the amounts of mercury volatilized for 3 h from the reaction mixture containing 7 microM Hg2+ using a Fe(2+)-dependent mercury volatilization enzyme system were 5.6 nmol for SUG 2-2 and 67.5 nmol for MON-1, respectively, indicating that a marked increase of Fe(2+)-dependent mercury volatilization activity conferred on strain MON-1 the ability to grow rapidly in a Fe2+ medium containing 20 microM Hg2+. Iron oxidizing activities, 2,3,5,6-tetramethyl-p-phenylenediamine (TMPD) oxidizing activities and cytochrome c oxidase activities of strains SUG 2-2 and MON-1 were 26.3 and 41.9 microl O2 uptake/mg/min, 15.6 and 25.0 microl O2 uptake/mg/min, and 2.1 and 6.1 mU/mg, respectively. These results indicate that among components of the iron oxidation enzyme system, especially cytochrome c oxidase activity, increased by the acquisition of further mercury resistance in strain MON-1. Mercury volatilized by the Fe(2+)-dependent mercury volatilization enzyme system of strain MON-1 was strongly inhibited by 1.0 mM sodium cyanide, but was not by 50 nM rotenone, 5 microM 2-n-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), 0.5 microM antimycin A, or 0.5 microM myxothiazol, indicating that cytochrome c oxidase plays a crucial role in mercury volatilization of strain MON-1 in the presence of Fe2+.  相似文献   

19.
When Acidithiobacillus ferrooxidans ATCC23270 cells, grown for many generations on sulfur were grown in sulfur medium with and without Fe(3+), the bacterium markedly increased not only in iron oxidase activity but also in Fe(2+)-producing sulfide:ferric ion oxidoreductase (SFORase) activity during the early log phase, and retained part of these activities during the late log phase. The activity of SFORase, which catalyzes the production of Fe(2+) from Fe(3+) and sulfur, of sulfur-grown cells was approximately 10-20 fold higher than that of iron-grown cells. aa(3) type cytochrome c oxidase, an important component of iron oxidase in A. ferrooxidans, was partially purified from sulfur-grown cells. A. ferrooxidans ATCC23270 cells grown for many generations on sulfur had the ability to grow on iron as rapidly as that did iron-grown cells. These results suggest that both iron oxidase and Fe(2+)-producing SFORase have a role in the energy generation of A. ferrooxidans ATCC23270 from sulfur.  相似文献   

20.
Thiobacillus ferrooxidans is a chemolithotrophic bacterium capable of fulfilling all of its energy requirements from the oxidation of soluble ferrous sulfate. Rusticyanin is a soluble blue copper protein found in abundance in the periplasmic space of this bacterium. The one-electron transfer reaction between soluble iron and purified rusticyanin has been studied by stopped flow spectrophotometry in acidic solutions containing sulfate. Second order rate constants for the reduction of rusticyanin by Fe2+, FeHSO4+, and FeSO4(0) were 0.022, 0.73, and 2.30 M-1 s-1, respectively. The pseudo-first order rate constant for the reduction of rusticyanin exhibited substrate saturation when the concentration of the total ferrous ion was varied in solutions of limiting sulfate. This saturation behavior was quantitatively described using the values of the second order rate constants listed above and the distribution of the total ferrous ion into its water-, bisulfate-, and sulfate-coordinated forms. Second order rate constants for the oxidation of rusticyanin by Fe3+ and FeSO4+ were 0.73 and 0.26 M-1 s-1, respectively. The electron transfer reactions between iron and rusticyanin monitored in vitro were far too slow to support the hypothesis that rusticyanin is the primary oxidant of ferrous ions in the iron-dependent respiratory electron transport chain of T. ferrooxidans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号