首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

2.
A cDNA encoding a full-length rat 5α-reductase was isolated using female rat liver mRNA and the polymerase chain reaction, and fused to the Escherichia coli trp E gene in a pATH expression vector. The trp E-5α-reductase fusion protein expressed in bacteria and a synthetic oligopeptide corresponding to the C-terminus of rat 5α-reductase were used as antigens to produce rabbit polyclonal antibodies to 5α-reductase. Antibodies to the 5α-reductase portion of the fusion protein and to the peptide were purified by affinity chromatography. Antibodies against the 5α-reductase fusion protein reacted with a single component of rat liver microsomes with Mr 26,000 on Western blots, consistent with the size of 5α-reductase predicted from its cDNA, and with a Mr 23,000 component on Western blots of detergent extracts of rat ventral prostate nuclei; other rat ventral prostate cellular fractions (mitochondrial, microsomal, cytosol) bound little or no antibody. Antibody against the synthetic peptide reacted with a Mr 26,000 component of rat liver microsomes as well as with several components in various cellular fractions of rat ventral prostate. With anti-5α-reductase fusion protein antibodies, specific immunocytochemical staining was observed in the epithelial cell nuclei of the rat ventral prostate, seminal vesicle, epididymis and other accessory sex glands. This nuclear staining was specific, since antibodies from non-immunized rabbits did not give nuclear staining and preincubation of the anti-5α-reductase fusion protein antibodies with the trp E-5α-reductase fusion protein eliminated nuclear staining. Incubation of antibodies with trp E (without the 5α-reductase fusion) had no effect on nuclear staining. Specific staining was not detected in the cytoplasm of these epithelial cells. Little or no specific staining was observed in stromal cells in these rat tissuess. Human prostate was also immunocytochemically stained with this antibody. Specific staining was found in both epithelial and stromal cell nuclei.  相似文献   

3.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

4.
Trihydroxy and tetrahydroxy bile acid metabolites substituted at the C-1 or C-6 position were studied using the urine, serum and liver tissue from sixteen patients with cholestatic liver diseases. Following extraction, isolation and hydrolysis, bile acids were converted into the dimethylethylsilyl derivatives and assayed by capillary gas chromatography—mass spectrometry. Five 1β-hydroxylated bile acids, viz. 1β,3α,12α-trihydroxy-, 1β,3α,7β-trihydroxy-1, 1β,3α,7α,12α-tetrahydroxy-5β-cholanoic acids and an epimer of the first compound, and two 6α-hydroxylated bile acids, viz. 3α,6α,7α-trihydroxy-, 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acids, were completely or partially identified. Large amounts of 1β-hydroxylated and 6α-hydroxylated bile acids were found in the urine, whereas only trace amounts were detected in the serum and liver tissue. These findings indicate that altered metabolism, such as 1β- or 6α-hydroxylation of bile acids, is enhanced in cholestasis, and that the resulting hydroxylated metabolites are eliminated in the urine.  相似文献   

5.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

6.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin γ1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to γ1 and β1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin β1 antibody–Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to β1 and γ1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin α4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20–35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to β1 and α6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (α4β1γ1) and that the cells adhere to the protein by using α6β1 integrin.  相似文献   

7.
α-Bungarotoxin is fluorescently labeled with tetramethyl rhodamine isothiocyanate and then fractionated on Sephadex G-25 and CM-Sephadex C-50 columns. The elution profile of the CM-Sephadex C-50 columns exhibits four distinct fluorescent peaks and a peak of unlabeled toxin. All four fluorescent peaks can fluorescently stain mouse diaphragm motor end plates. The most slowly eluting peak, Peak IV, has the highest quantum efficiency. Peak IV, which is identified as monolabeled tetramethyl rhodamine α-bungarotoxin, binds irreversibly to acetylcholine receptors on electroplax fragments and labels the fragments more intensely than Peaks I–III, which are identified as mixtures of multiply labeled tetramethyl rhodamine α-bungarotoxin.  相似文献   

8.
β-Glucosidases (Glu1 and Glu2) in maize specifically interact with a lectin called β-glucosidase aggregating factor (BGAF). We have shown that the N-terminal (Glu50–Val145) and the C-terminal (Phe466–Ala512) regions of maize Glu1 are involved in binding to BGAF. Sequence comparison between sorghum β-glucosidases (dhurrinases, which do not bind to BGAF) and maize β-glucosidases, and the 3D-structure of Glu1 suggested that the BGAF-binding site on Glu1 is much smaller than predicted previously. To define more precisely the BGAF-binding site, we constructed additional chimeric β-glucosidases. The results showed that a region spanning 11 amino acids (Ile72–Thr82) on Glu1 is essential and sufficient for BGAF binding, whereas the extreme N-terminal region Ser1–Thr29, together with C-terminal region Phe466–Ala512, affects the size of Glu1–BGAF complexes. The dissociation constants (Kd) of chimeric β-glucosidase–BGAF interactions also demonstrated that the extreme N-terminal and C-terminal regions are important but not essential for binding. To confirm the importance of Ile72–Thr82 on Glu1 for BGAF binding, we constructed a chimeric sorghum β-glucosidase, Dhr2 (C-11, Dhr2 whose Val72–Glu82 region was replaced with the Ile72–Thr82 region of Glu1). C-11 binds to BGAF, indicating that the Ile72–Thr82 region is indeed a major interaction site on Glu1 involved in BGAF binding.  相似文献   

9.
Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human β-amyloid peptide bind to preformed β-amyloid fibrils (Aβ), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid β-protein (AβP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AβP. Such antibodies are able to sequester peripheral AβP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed β-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases.  相似文献   

10.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

11.
Ligand affinity chromatography was used to identify receptors on platelets and two adherent cell lines, OVCAR-4 and HBL-100, for the E8 fragment of murine laminin. A complex of two polypeptides (140 and 110 kDa nonreduced) was bound by the E8 affinity columns from all three cell types and was eluted with EDTA. This heterodimeric complex was identified as the α6β1 integrin by immunoprecipitation with specific antibodies against either the α6 or the β1 subunit. The α6β1 integrin did not bind to an affinity column containing fragment P1 originating from a different part of murine laminin which, however, bound the αIIbβ3 integrin from platelets. Furthermore, in immunofluorescence staining, the α6β1 integrin localizes in focal contacts of OVCAR-4 cells attached to laminin and E8 but not to fibronectin substrates. These results, combined with previous antibody inhibition studies, unequivocally identify the α6β1 integrin as a specific receptor for fragment E8. Affinity chromatography of OVCAR-4 and HBL-100 cells on a large pepsin fragment of laminin from human placenta yielded integrin α3β1. When α3β1 was removed from lysates of OVCAR-4 cells by preclearing with an α3-specific monoclonal antibody, α6β1 was able to bind to human laminin as well. Integrin α6β1 on platelets which do not express α3β1 binds directly to human laminin. These results indicate that both α3β1 and α6β1 can act as receptors for human laminin and may interfere by steric hindrance. The α6β4 complex, which is strongly expressed on HBL-100 cells, did not bind to either mouse laminin fragment E8 or human laminin affinity columns.  相似文献   

12.
The fate of 6α- and 6β-hydrogens of lathosterol during the transformation into 20-hydroxyecdysone was chased by feeding [3α,6β-2H2]- and [3α,6α-2H2]-lathosterols to hairy roots of Ajuga reptans var. atropurpurea. The behavior of 6β-hydrogen, which mostly migrated to the C-5 position of 20-hydroxyecdysone, was in agreement with that of C-6 hydrogen of cholesterol. The results strongly supported the view that cholesterol and lathosterol are first metabolized into 7-dehydrocholesterol, which is then converted into 20-hydroxyecdysone via 7-dehydrocholesterol 5α,6α-epoxide in the hairy roots.  相似文献   

13.
The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.  相似文献   

14.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

15.
POMC-derived peptides and mRNA have been identified in heart tissue, although POMC processing has not been fully characterized. In the present study, we found that β-lipotropin and ACTH were localized in rat heart, although they were almost entirely converted to β-endorphin- and α-MSH-related peptides. Ion exchange HPLC analysis revealed that β-endorphin(1–31) was further processed to α-N-acetyl-β-endorphin(1–31), which comprised 35.9 ± 0.1% of total immunoreactivity, and smaller amounts of β-endorphin(1–27), β-endorphin(1–26), and their α-N-acetylated derivatives. The predominant α-MSH immunoreactive peptides coeluted with α-MSH and N,O-diacetyl-α-MSH by reverse-phase HPLC, although small amounts of ACTH(1–13)-NH2 were also present. Thus, multiple forms of β-endorphin and α-MSH are localized in rat heart. β-Endorphin(1–31) is a minor constituent, however, indicating that nonopioid β-endorphin peptides predominate.  相似文献   

16.
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT only and thus warrants further investigation.  相似文献   

17.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

18.
The α-subunit of an abundant chick gizzard integrin was isolated ([12.], J. Biol. Chem. 262, 17,189–17,199) and fragmented by proteolytic digestion. The N-terminal sequences of the intact polypeptide and of several internal peptides were determined and were found to be highly homologous to the mammalian integrin α1-subunit. Monoclonal antibodies to the chick integrin β1-chain react on immunoblots with the gizzard integrin β-subunit ([28.], J. Biol. Chem. 265, 14,561–14,565). The chain composition of the abundant chick gizzard integrin is therefore α1β1. Polyclonal antibodies to the avian integrin α1-subunit block attachment of embryonic gizzard cells to human and chick collagen IV completely and inhibit attachment to mouse Engelbreth-Holm-Swarm (EHS) tumor laminin partially. In ELISA-style receptor assays, the isolated α1β1 integrin bound to human and chick collagen IV and to mouse EHS tumor and chick heart laminin. While the binding to collagen IV was abolished by removal of divalent cations, the binding to laminin was not sensitive to EDTA under the conditions used. Collagen I bound the isolated avian α1β1 integrin only weakly. As collagen IV was the only extracellular matrix protein for which a consistent, divalent cation-dependent, binding to the avian α1β1 integrin could be demonstrated in both cellular and molecular assays we suggest that it is a preferred ligand for this integrin.  相似文献   

19.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

20.
Prostaglandin F2α (PGF2α) is a potent adipose differentiation inhibitor for the adipogenic cell line 1246 and for adipocyte precursors in primary culture with an ED50 of 3×10−8 M. In this paper, we examined the effect of several prostaglandins which have structural similarities with PGF2α on the differentiation of 1246 cells and of adipocyte precursors in primary culture. The results show that only 9α,11β-PGF2α is as potent as PGF2α to inhibit differentiation of adipocyte precursors in primary culture and of the adipogenic cell line 1246. In the presence of 9α,11β-PGF2α, the cells remained fibroblast-like, typical of undifferentiated adipocyte precursors. Triglyceride accumulation and increase of specific activity for glycerol-3-phosphate dehydrogenase were inhibited. In addition, mRNA expression of early markers of differentiation such as lipoprotein lipase (LPL) and fatty acid binding protein (FAB) was decreased. The isomer 9β,11α-PGF2α and other PGF2α derivatives were inactive. These results provide new information on the biological activity of 9α,11β-PGF2α as an inhibitor of adipose differentiation and about the structural characteristics of prostaglandins required for maintenance of a high adipose differentiation inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号