首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest levels of diversity for testate amoebae suggests that moisture levels at the level of the bryophyte canopy may not represent a biodiversity driver in a cloud forest with high relative humidity; however, high roughness could generate a dynamic and fluctuating moisture environment with concomitant alternating microbial communities. A total of 26 microcrustacean morphospecies were found across 11 bryophytes; however, no bryophyte canopy effect was detected on their richness and density. Microcrustacean mean density was low ranging from less than one individual per 50 cm2 of bryophyte in Leucobryum (LR) to a maximum of 6 ± 3.37 SD individuals/50 cm2 in Monoclea (LR). This lack of pattern suggests that possible explanatory variables may be related to larger scale processes than those examined in this study.  相似文献   

2.
In most bryophytes, the thickness of boundary layers (i.e., unstirred layers) that surrounds plant surfaces governs rates of water loss. Architectural features of canopies that influence boundary layer thickness affect the water balance of bryophytes. Using field samples (9.3 cm diameter cushions) from 12 populations (11 species) of mosses and liverworts, we evaluated the relationship between canopy structure and boundary layer properties. Canopy structure was characterized using a contact surface probe to measure canopy depth along perpendicular transects at spatial scales ranging from 0.8 to 30 mm on 186 points per sample. Semivariance in depth measurements at different spatial scales was used to estimate three architectural properties: surface roughness (L(r)), the scale of roughness elements (S(r)), and fine-scale surface texture, the latter characterized by the fractal dimension (D) of the canopy profile. Boundary layer properties were assessed by evaporation of ethanol from samples in a wind-tunnel at wind speeds from 0.6 to 4.2 m/s and applied to characterize mass transfer using principles of dynamic similarity (i.e., using dimensionless representations of conductance and flow). In addition, particle image velocimetry (PIV) was used to visualize and quantify flow over two species. All cushions exhibited the characteristics of turbulent as opposed to laminar boundary layers, and conductance increased with surface roughness. Bryophyte canopies with higher L(r) had greater conductances at all wind speeds. Particle image velocimetry analysis verified that roughness elements interacted with flow and caused turbulent eddies to enter canopies, enhancing evaporation. All three morphological features were significantly associated with evaporation. When L(r), S(r), and D were incorporated with a flow parameter into a conductance model using multiple linear regression, the model accounted for 91% of the variation in mass transfer.  相似文献   

3.
Senescence of lower leaves (LS) begins before anthesis in sunflower crop canopies. Using isolated field-grown sunflower plants, it has previously been shown that pre-anthesis LS is dependent on photosynthetic photon flux density (PPFD) and is hastened by increases in far-red light. We tested the hypothesis that increasing the red/far-red ratio (R/FR) perceived by basal leaves within canopies delays LS. To do this, light impinging on the lower surface of north-oriented 8th leaves (cotyledons=0) of crops with maximum leaf area indexes of 3.3 (Experiment 1) and 2.4 (Experiment 2) was enriched (+8.33 μmol m−2 s−1) with red light using light emitting diode (LED) panels. LED panels constructed with unlit LED or with green LED (PPFD slightly greater than the red LED panels, to compensate for lower efficiency) were used as controls. Compared with controls, additional R significantly ( P <0.05) increased R/FR perceived by the lower surface and significantly ( P <0.01) delayed LS. On average, leaf duration, as time between full expansion and a 70% diminution of chlorophyll content, was 5 days greater for leaves receiving extra red light (maximum observed LD=27 days). We conclude that an increase in the R/FR ratio can delay LS in crop canopies.  相似文献   

4.
Superficial photothermal laser ablation (SPLA) may be useful as a therapeutic approach producing a depth of injury that is sufficient to eliminate mucosal lesion but not deep enough to induce thermal effects in deeper tissue layers. The purpose of this preliminary study is twofold: (a) to describe design steps of a fiber probe capable of delivering a tightly focused laser beam, including Monte‐Carlo‐based simulations, and (b) to complete the initial testing of the probe in a sheep esophagus model, ex vivo. The cone‐shaped (tapered) fiber tip was obtained by chemical etching of the optical fiber. A 1505 nm diode laser providing power up to 500 mW was operated in continuous wave. The successful SPLA of the sheep mucosa layer was demonstrated for various speed‐power combinations, including 300 mW laser power at a surface scanning rate of 0.5 mm/s and 450 mW laser power at a surface scanning rate of 2.0 mm/s. Upon further development, this probe may be useful for endoscopic photothermal laser ablation of the mucosa layer using relatively low laser power.  相似文献   

5.
Structural and morphological characteristics of composite imprinted membranes for selective recognizing of adenosine 3',5'-cyclic monophosphate (cAMP) were studied. Composite polyvinylidene fluoride microfiltration membranes (Millipore) covered with a thin imprinted polymer layer were prepared using photoinitiated copolymerization of dimethylaminoethylmetacrylate with trimethylolpropanethrimethacrylate in the presence of cAMP as template. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise surfaces and cross-sections of imprinted membranes and to determine their structural and morphological parameters such as pore size, thickness of selective imprinted layer, surface roughness as well as total surface contact area. The impact of structural characteristics on separation properties of the imprinted membranes was analyzed. It was found out that the thickness of the imprinted polymer layer with optimal recognizing properties is limited.  相似文献   

6.
Biomimetic coupling surface is a recent development in surface science of materials. One of the important methods to achieve this surface is to manufacture large numbers of structural units by certain techniques, arranging them regularly on the surface layer of materials to form the biomimetic structure. The penetration depth and the surface roughness of units are two crucial factors that affect strongly the properties of materials. In this paper, a YAG pulsed laser with varied parameters (electrical current 200 A to 300 A, pulse duration 5 ms to 15 ms, frequency 4 Hz to 10 Hz and scanning speed 0.24 mm·s?1 to 0.72 mm·s?1) was used to fabricate these units on the surface of 3Cr2W8V die steel. The penetration depth and surface roughness of the units were investigated based on orthogonal experimental design. To maximize the penetration depth and minimize the surface roughness, the range analysis and subsequently overall balance method were adopted to identify the most significant factor and level. Meanwhile the most preferable combination of the laser processing parameters was selected. The effect of laser processing parameters on the penetration depth and surface morphology of units was analyzed. The interrelationship among the processing parameters, the penetration depth and the surface roughness was discussed.  相似文献   

7.
Scanning ion conductance microscopy of living cells.   总被引:4,自引:0,他引:4  
Currently there is a great interest in using scanning probe microscopy to study living cells. However, in most cases the contact the probe makes with the soft surface of the cell deforms or damages it. Here we report a scanning ion conductance microscope specially developed for imaging living cells. A key feature of the instrument is its scanning algorithm, which maintains the working distance between the probe and the sample such that they do not make direct physical contact with each other. Numerical simulation of the probe/sample interaction, which closely matches the experimental observations, provides the optimum working distance. The microscope scans highly convoluted surface structures without damaging them and reveals the true topography of cell surfaces. The images resemble those produced by scanning electron microscopy, with the significant difference that the cells remain viable and active. The instrument can monitor small-scale dynamics of cell surfaces as well as whole-cell movement.  相似文献   

8.
Psychophysical visual analog scaling can be used to reveal critical determinants of the neural processing underlying non-painful and painful heat sensations produced by radiant and contact heat stimulation. This study determined the stimulus-response (S-R) functions of cutaneous non-painful and painful heat stimuli delivered by an infra-red CO2 laser or by a contact thermode in a series of experiments in healthy volunteers. In experiment 1 ( n = 12), with the rating scale anchored at pain threshold, the S-R curve for brief (60 ms) laser pulse stimulation with a beam diameter of 10 mm was a negatively accelerating function. Transformation of laser stimulus intensity (W) into temperatures ( C) did not change the form of the S-R curve. In experiment 2 ( n=9), using the same laser stimulus parameters as in experiment 1, but without an anchored rating scale, the form of the S-R relationship did not change. In experiment 3 ( n =9), increases of the laser pulse duration up to 5 s and the beam diameter up to 18 mm produced linear S-R curves. In contrast, in experiment 4 ( n =21), the S-R curve for cutaneous contact heat stimuli applied for 5 s with an 18 mm diameter probe was best described by a positively accelerating power function with an exponent greater than 2.0. These experiments have (1) characterized the S-R functions for different parameters of infra-red laser stimulation of the skin, and (2) have shown that the form of the S-R function for innocuous and noxious heat sensation is influenced strongly by the physical conditions of heat stimulus application, including mechanical contact with the skin.  相似文献   

9.
A rapid and accurate technique for pregnancy diagnosis in sows has been developed. A portable ultrasonic linear electronic scanner was used in conjunction with 3.5 MHz multitransducers. The scanner employed ultrasonic waves to generate a two-dimensional image of an interior cross-section of an animal and the image was displayed on a TV monitor. The tip of the transducer was placed in contact with the lower flank of the standing sow about 5 cm posterior to the navel and just lateral to the nipple line directing toward the uterus. Results of tests conducted under controlled conditions on a farm, using 145 sows, proved that accuracy of the technique approaches 100% for diagnosing pregnancy from day 22 of gestation through term. The time of feeding before scanning did not affect the accuracy of pregnancy diagnosis.  相似文献   

10.
Atomic force microscopy (AFM) is a modern experimental method for imaging of conducting or non-conducting samples. New trends in the application of scanning probe microscopy (SPM) give us the ability to scan live cells directly in their ingenuous surroundings or in air. Our apparatus was replenished with an inverse optical microscope, so we could observe the position of the scanning tip in every individual cell. The aim of the presented study is to picture the cell surface in air. A dry scanner in non-contact or tapping mode was used in the biological application of AFM. In our work the cell line G361 was used as a biological sample. We imaged the cell line before and after induction of a photodynamic effect (PDE) by irradiation of ZnTPPS4-loaded cells with a light dose of 15 J/cm(2). Individual cells before PDE induction had a smooth surface without protrusion on the entire surface. Cells after PDE induction did not have a smooth surface but their surface was rough with protrusion and in some places cleaved.  相似文献   

11.
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.  相似文献   

12.
The resolving ability of polyvinyl siloxane impression material at a submicron scale was tested in order to determine its ability to reproduce the topographical features of worn contact surfaces such as those found in the food processing industry. Three impression materials were tested against three surfaces with standardized surface features. Cryo scanning electron microscopy and atomic force microscopy were used to provide high magnification images of the surfaces and impressions of the surfaces. Dimensional information was also provided by surface profilometry techniques using a solid stylus and a laser profilometer. Although the three impression materials accurately reproduced the line spacing of the largest scale test specimen, the least viscous material gave the most satisfactory surface reproduction, although a degree of vertical relief was lost. This material has been used to monitor wear of food contact surfaces in situ. Such information enables further research into the effect of increased or altered substratum surface roughness upon microbial and organic soil retention.  相似文献   

13.
The effect of three water-soluble fusogens: dimethyl sulfoxide (DMSO), glycerol and sucrose on the structural properties of model lipid membranes has been studied by electron spin resonance (ESR) using 5-doxylstearic acid as a spin probe and by fluorescence spectroscopy using pyrene as an excimer forming fluorescent probe. All three fusogens tested produce a marked increase in the order parameter of the region close to the polar surface of the lipid bilayer. The ordering effect of DMSO, but not of glycerol and sucrose, is much stronger with respect to membranes prepared from acidic than from neutral phospholipids. The membrane-perturbing action of glycerol and sucrose manifests itself also in the reduced lateral mobility of membrane incorporated pyrene, indicating thus a decreased fluidity of the bilayer hydrophobic region. The structural perturbations produced in model membranes by DMSO, glycerol and sucrose are discussed in relation to the mechanism by which these substances promote cell fusion.  相似文献   

14.
This paper describes work carried out to develop a biosensor which allows two separate detection principles to operate simultaneously at the same surface. A prototype device was constructed that provided Kretschmann-configuration surface plasmon resonance (SPR) measurement of refractive index (RI) changes using an 820 nm LED light source, whilst a 635 nm diode laser was used to produce light scattering signals from bacterial spores. Both effects occurred at a gold-coated surface. The RI changes were measured conventionally from the side of the gold layer nearer to the light sources. The scattered light was imaged from the opposite face which was in contact with the aqueous sample. Specific detection of bacterial spores through the light scattering mode using antibody capture was investigated. The flow dynamics and interactions with the surface of individual spores were observed. A comparison with SPR for detection using the same antibody/antigen pair was made. Spore suspensions that were readily detectable by light scattering at 10(7) ml(-1) did not provide significant responses by SPR. The potential for future developments is discussed.  相似文献   

15.
Cursorial central‐place foragers like ants are expected to minimize travel costs by choosing the least resistive pathways to food resources. Tropical arboreal and semi‐arboreal ants locomote over a variety of plant surfaces, and their choice of pathways is selective. We measured the roughness of tree trunk and liana stem surfaces using laser scanning technology, and explored its consequences for running speed in various ant taxa. The average amplitude of tree trunk surface roughness differed interspecifically, and ranged from 1.4–2.2 mm among three common tree species (Anacardium excelsum, Alseis blackiana, and Dipteryx panamensis). The roughness of liana stems also varied interspecifically (among Tontelea ovalifolia, Bauhinia sp. and Paullinia sp.) and was an order of magnitude lower than tree surface roughness (mean amplitude ranged 0.09–0.19 mm). Field observations of various ant species foraging on tree trunks and liana stems, and on dowels covered with sandpaper, showed that their running speed declined with increasing amplitude of roughness. The effect of roughness on running speed was strongest for mid‐sized ants (Azteca trigona and Dolichoderus bispinosus). The accumulation rate of ants at baits did not vary with tree surface roughness, but was significantly lower on moss‐covered versus moss‐free bark. Collectively, these results indicate that the quality of plant substrates can influence the foraging patterns of arboreal ants, but likely is more important for resource discovery than for dominance on bare tree surfaces.  相似文献   

16.
Bionic surface structures,inspired by the flora,were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior.Five bionic structures were micromilled on ASP(R)2023,in annealed as well as hardened and tempered conditions.Subsequently,the structured surfaces were plasma-nitrided and coated with a CrA1N thin film.The influence of the treatment method on the structural geometry was investigated with the aid of a scanning electron microscope and 3D-profilometer.The wetting behaviors of water and deep drawing oil (Berufluid ST6007) on bionic surfaces were evaluated using contact angle measurements.The resulting micro-milled structures exhibit an almost identical shape as their bionic models.However,the roughness of the structured surfaces is influenced by the microstructure.The combination of plasma-nitriding and Physical Vapor Deposition (PVD) leads to an increase in roughness.All bionic structures possess higher contact angles than that of the unstructured surfaces when wetted by water.This can be explained by the fact that the structural elevations block the spreading.When the bionic surfaces are wetted by deep drawing oil,the lubricant spreads in the structural cavities,leading to smaller contact angles.Furthermore,the anisotropy of the structure has an influence on the wetting behavior.  相似文献   

17.
Boreal peatlands, which contain a large fraction of the world's soil organic carbon pool, may be significantly affected by changes in climate and land use, with attendant feedback to climate through changes in albedo, fluxes of energy or trace gases, and soil carbon storage. The response of peatlands to changing environmental conditions will probably be dictated in part by scale-dependent topographic heterogeneity, which is known to interact with hydrology, vegetation, nutrients, and emissions of trace gases. Because the bryophyte community can contribute the majority of aboveground production in bogs, we investigated how microscale topography affects the response of bryophyte species production and cover to warming (using overhead infrared lamps) and manipulations of water-table height within experimental mesocosms. We removed 27 intact peat monoliths (2.1-m2 surface area, 0.5-0.7 m depth) from a bog in northern Minnesota, USA, and subjected them to three warming and three water-table treatments in a fully crossed factorial design. Between 1994 and 1998, we determined annual production of the four dominant bryophyte taxa within three microtopographic zones (low, medium, and high relative to the water table). We also estimated species cover and calculated changes in topography and roughness of the bryophyte surface through time. Total production of all bryophytes, and production of the individual taxa Polytrichum strictum, Sphagnum magellanicum, and Sphagnum Section Acutifolia, were about 100% greater in low microtopographic zones than in high zones, and about 50% greater in low than in medium zones. Production of bryophytes increased along the gradient of increasing water-table heights, but in most years, total production of bryophytes was negatively correlated with height above the set water table only for the wettest water-table treatment. Although bryophyte production was unaffected by the warming treatments, the bryophyte surface flattened in proportion to the degree of warming. These results indicate that production of bryophytes is driven most strongly by the absolute and relative height of the bryophyte surface above the water table. Predicted changes in water-table height commensurate with changes in surface temperature may thus affect both production and superficial topography of bryophyte communities.  相似文献   

18.
The relative hygienic status of 16 stainless steel surfaces, characterised by topography and surface free energy was investigated. B. thuringiensis spores suspended in Bechamel sauce was chosen as the test fouling suspension. Surface topography was assessed using 10 standardised roughness parameters, along with scanning electron microscope observations. The number of residual adhering spores after a fouling and cleaning in place procedure was found to be influenced by the topography of the stainless steel surface, but not by the surface free energy. Among the various roughness parameters, RA, RRR RPK and RVK were shown to be related to the hygienic status. Microscopic observations demonstrated the influence of the shape and size of surface irregularities on the level of residual soil after cleaning. This confirms that the use of only one roughness parameter, usually RA, is not sufficient in defining the hygienic status of stainless steel surfaces.  相似文献   

19.
Estimating leaf temperature distributions (LTDs) in canopies is crucial in forest ecology. Leaf temperature affects the exchange of heat, water, and gases, and it alters the performance of leaf‐dwelling species such as arthropods, including pests and invaders. LTDs provide spatial variation that may allow arthropods to thermoregulate in the face of long‐term changes in mean temperature or incidence of extreme temperatures. Yet, recording LTDs for entire canopies remains challenging. Here, we use an energy‐exchange model (RATP) to examine the relative roles of climatic, structural, and physiological factors in influencing three‐dimensional LTDs in tree canopies. A Morris sensitivity analysis of 13 parameters showed, not surprisingly, that climatic factors had the greatest overall effect on LTDs. In addition, however, structural parameters had greater effects on LTDs than did leaf physiological parameters. Our results suggest that it is possible to infer forest canopy LTDs from the LTDs measured or simulated just at the surface of the canopy cover over a reasonable range of parameter values. This conclusion suggests that remote sensing data can be used to estimate 3D patterns of temperature variation from 2D images of vegetation surface temperatures. Synthesis and applications. Estimating the effects of LTDs on natural plant–insect communities will require extending canopy models beyond their current focus on individual species or crops. These models, however, contain many parameters, and applying the models to new species or to mixed natural canopies depends on identifying the parameters that matter most. Our results suggest that canopy structural parameters are more important determinants of LTDs than are the physiological parameters that tend to receive the most empirical attention.  相似文献   

20.
Dicks  Leon M. T.  Botha  Marlie  Loos  Ben  Smith  Carine 《Annals of microbiology》2015,65(2):1087-1096
Lactobacillus reuteri Lr1, isolated from healthy horses, remained viable after 2 h at pH 2.0 and in the presence of 1.5 % (w/v) bile. Strain Lr1 survived passage through the equine gastro-intestinal tract (GIT). However, no viable cells of L. reuteri Lr1 were detected on the third day after administration, suggesting that the strain did not colonise the GIT for longer than two days. Strain Lr1 adhered to non-viable, but not to viable, buccal epithelial cells in vitro. Adherence of strain Lr1 to buccal epithelial cells increased 25 % after treatment of the bacterial cells with pepsin. Treatment with pronase prevented the adhesion to epithelial cells. This suggested that specific proteins on the cell surface of L. reuteri Lr1 are involved in adhesion to epithelial cells. Strain Lr1 aggregated with Clostridium difficile C6, isolated from the GIT of a horse that died from severe colic. Adherence of C. difficile C6 to epithelial cells declined from 60 % to 3 % when challenged with L. reuteri Lr1 and the number of viable clostridia decreased tenfold during dosage. Red blood cell, haemoglobin and haemocrit levels were significantly (P ≤ 0.05) lower after dosage with L. reuteri Lr1. Cholesterol and glucose levels were mildly elevated for one day during dosage, but decreased significantly thereafter to levels similar than before dosage. Genes encoding adhesion to collagen, production of aggregation substances, cytolysin and β hemolysin III, resistance to vancomycin A, B and C, and gelatinase activity were not detected, suggesting that L. reuteri Lr1 is a potential probiotic that may be used to control C. difficile cell numbers in the GIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号