首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competitive protein adsorption plays a key role in the surface hemocompatibility of biological implants. We describe a quantitative chromatography method to measure the coverage of multiple proteins physisorbed to surfaces. In this method adsorbed proteins are displaced by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and then analyzed by high performance liquid chromatography to separate and quantify the individual proteins, in this case bovine serum albumin (BSA) and bovine fibrinogen (Fg). CHAPS displaced over 95% of the adsorbed proteins and was easily removed from solution by dialysis. This method was tested by measuring the coverage of BSA, 66 kDa, and Fg, 340 kDa, simultaneously adsorbed from solutions with concentration of 20 microg/ml, on bare and dextranized silicon. Relative to silicon, the dextranized surfaces were found to strongly inhibit protein adsorption, decreasing BSA and Fg coverages by 76 and 60%, respectively.  相似文献   

2.
The biological consequences of protein adsorption on biomaterial surfaces are considered to be of utmost importance for their biocompatibility. A new method based on amino group-labeling coupled to a chemiluminescence reaction for direct determination of proteins adsorbed on material surfaces was employed. This method was used to explore the effects of surface chemistry and surface roughness on protein adsorption in a silicon oxide model system. Corundum sandblasting was applied to silicon wafers to create roughened surfaces while immobilization of fluorocarbon-, hydrocarbon-, and poly(ethylene glycol)-containing silanes produced surfaces of varying wettability. The adsorption behavior of two complex body fluids, human serum and saliva, and of two purified components, human serum albumin and fibronectin, was strongly influenced by the surface parameters. A general tendency to higher amounts of adsorbed protein was found on roughened surfaces and modification with poly(ethylene glycol) or with fluorocarbon moieties reduced protein adsorption. The values obtained with the new method could be confirmed by a colorimetric determination of protein amounts adsorbed on identically modified silica beads and were in accordance with those previously reported utilizing established methods for protein quantification. The presented method, which was methodically simple to perform and allowed the simultaneous measurement of a large number of samples, may be of future value for high-throughput surveying of the protein adsorption characteristics of biomaterials.  相似文献   

3.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

4.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml(-1) for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

5.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml?1 for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

6.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

7.

Whole unstimulated saliva from two donors was investigated both with respect to adsorption characteristics and SDS‐induced elutability. Salivary protein adsorption onto hydroxyapatite (HA) discs was studied by means of in situ ellipsometry in the concentration range 0.1–20% saliva. The adsorbed amounts on HA were found to be similar to those on silica, but the rates of adsorption were lower. Protein adsorption was virtually unaffected by the presence of Na+, whereas Ca2+ induced nucleation of calcium phosphate at the surface, the deposition rate being influenced by the pellicle age but not by the presence of saliva in bulk solution. The SDS elutability of adsorbed pellicles was determined on HA as well as on silica surfaces. Desorption from both surfaces was found to occur in the same SDS concentration range, although a residual layer was observed on HA. The slight net positive charge and lower charge density of HA as compared to the strongly negatively charged silica, may, at least partly, account for this observation by causing a reduction in the repulsive force between protein‐surfactant complexes and the surface. Inter‐individual differences, observed in the adsorption as well as elution experiments, are thought to relate to the compositional differences observed by SDS‐PAGE.  相似文献   

8.
Lysozyme for capture of microorganisms on protein biochips   总被引:3,自引:0,他引:3  
Lysozyme placed on the SiO2 surfaces that have previously been derivatized with C18 coating will capture both Escherichia coli and Listeria monocytogenes cells from PBS buffer at pH 7.2. This phenomenon is of significance for the design and fabrication of protein biochips that are designed to capture bacteria from buffer or water so that these can be further interrogated with respect to possible pathogenicity. Fluorescent microscopy shows that two types of bacteria (gram-negative E. coli and gram-positive Listeria spp.) will be adsorbed by lysozyme placed on the surface of the biochip but that strong adsorption of the bacteria is reduced but not eliminated when Tween 20 is present (at 0.5%) in the PBS buffer in which the cells are suspended. In comparison, Tween 20 and Bovine Serum Albumin (BSA) almost completely block adsorption of these bacteria on C18 coated surfaces. The combination of a lysozyme surface with Tween 20 gives a greater degree of adsorption of L. monocytogenes than E. coli, and hence suggests selectivity for the more hydrophobic E. coli may be reduced by the Tween 20. This paper presents protocols for preparing protein-coated, SiO2 surfaces and the effect of buffer containing Tween 20 on adsorption of bacteria by SiO2 surfaces coated with C18 to which BSA, lysozyme or C11E9 antibody is immobilized at pH 7.2 and ambient temperature.  相似文献   

9.
Radiolabels are often used to quantitatively determine the amount of protein immobilized on chromatographic supports, immunochemical plates and biosensor surfaces. Bovine serum albumin (BSA) was chosen as a model protein for quantitative deposition studies. BSA was radioiodinated (125I-) or fluorescently labelled (fluorescein), then incubated with the following surfaces: quartz, quartz derivatized by 3-aminopropyltriethoxysilane (Qz-APTES), and Qz-APTES reacted with glutaraldehyde or tresyl chloride. The amounts of BSA immobilized to the different surfaces were compared using data from radioactivity and fluorescence assays. Irreproducible results were obtained with radioiodinated BSA due to adsorption/desorption behaviour of an unidentified radioactive species. When the non-ionic detergent Tween 20 was added to the protein/surface incubation mixture, radiolabelled BSA gave reproducible protein binding results which agreed with fluorescent protein binding patterns. The effect of Tween 20 was due to either the binding to BSA displacing the interferent and/or the solubilization of the interferent.  相似文献   

10.
The efficacy of the antimicrobial peptide nisin was examined after adsorption to silica surfaces. Three protocols were used to evaluate nisin's activity against adhered cells ofListeria monocytogenes: bioassay usingPediococcus pentosaceous FBB 61-2 as the sensitive indicator strain; visualization and enumeration of cells by microscopic image analysis; and viability of adhered cells as determined by lodonitrotetrazolium violet uptake and crystallization. The activity of adsorbed nisin was highly dependent upon conditions of adsorption. The highest antimicrobial activity of adsorbed nisin occurred with high concentrations of nisin (1.0 mg ml–1) and brief contact times (1 h) on surfaces of low hydrophobicity. Sequential adsorption of a second protein (-lactoglobulin or bovine serum albumin) onto surfaces consistently resulted in decreased nisin activity. These data provide direction for the development of applications to limit microbial attachment on food contact surfaces through the use of adsorbed antimicrobial peptides.  相似文献   

11.
In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing S-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior.  相似文献   

12.
In this work, we found that Tween 20 treatment (0-8 mM) contributed to the cell wall collapse of most samples except for those with high lignin contents and high crystallinity. Cell wall collapse contributed to the formation of 10- to 50-nm pores and not only increased the monolayer saturation amount of adsorbed cellulase about 3-3.6 times but also increased the cellulase adsorption rate (D(e)/r(2)) about 160-880 times. Moreover, cellulose conversion at 72 h was also increased 8.7-21.5% by Tween 20 treatment. On the other hand, the adsorption of Tween 20 on Avicel (microcrystalline cellulose) hindered the cellulase reaction (adsorption and saccharification). The effect of Tween 20 treatment on the crystalline part was insignificant for both lignocelluloses and Avicel. It was found that some degree of pretreatment (e.g. lignin removal) that enhances Tween 20 diffusion into samples is necessary to obtain the structural effects of Tween 20.  相似文献   

13.
Previous studies have shown that certain glow discharge treated polymers strongly retain adsorbed albumin and fibrinogen. On the basis of this phenomenon, we have investigated the possibility of immobilizing antibodies on glow discharge treated surfaces for diagnostic immunoassay applications. As a model for antibody immobilization, bovine IgG was immobilized on the following polymers: polyethylene (PE), tetrafluoroethylene glow discharge treated PE (TFE/PE), poly(ethylene terephthalate) (PET), TFE/PET, poly(tetrafluoroethylene) (PTFE), ethylene glow discharge treated PET (E/PET) and hexamethyldisiloxane glow discharge treated PET (HMDS/PET). IgG was radiolabeled with 125I and immobilized by either of the following two methods: (a) physical adsorption of IgG on untreated and glow discharge treated polymers or (b) physical adsorption of albumin followed by chemical coupling of IgG to albumin by glutaraldehyde. IgG concentration as well as adsorption times were varied in order both to optimize the immobilization conditions and to investigate the adsorption and retention mechanisms. To evaluate the efficiency of the immobilization techniques, blood plasma, Tween-20, and sodium dodecyl sulfate (SDS) were used to elute the adsorbed IgG layer. We found that IgG was successfully immobilized on the fluorocarbon glow discharge treated surfaces by using either the physical adsorption or the glutaraldehyde coupling method, although the former is more efficient than the latter method.  相似文献   

14.
Unmodified and polyethylene glycol (PEG) modified neutral and negatively charged liposomes were prepared by freeze-thaw and extrusion followed by chromatographic purification. The effects of PEG molecular weight (PEG 550, 2000, 5000), PEG loading (0-15 mol%), and liposome surface charge on fibrinogen adsorption were quantified using radiolabeling techniques. All adsorption isotherms increased monotonically over the concentration range 0-3 mg/ml and adsorption levels were low. Negatively charged liposomes adsorbed significantly more fibrinogen than neutral liposomes. PEG modification had no effect on fibrinogen adsorption to neutral liposomes. An inverse relationship was found between PEG loading of negatively charged liposomes and fibrinogen adsorption. PEGs of all three molecular weights at a loading of 5 mol% reduced fibrinogen adsorption to negatively charged liposomes. Protein adsorption from diluted plasma (10% normal strength) to four different liposome types (neutral, PEG-neutral, negatively charged, and PEG-negatively charged) was investigated using gel electrophoresis and immunoblotting. The profiles of adsorbed proteins were similar on all four liposome types, but distinctly different from the profile of plasma itself, indicating a partitioning effect of the lipid surfaces. alpha2-macroglobulin and fibronectin were significantly enriched on the liposomes whereas albumin, transferrin, and fibrinogen were depleted compared to plasma. Apolipoprotein AI was a major component of the adsorbed protein layers. The blot of complement protein C3 adsorbed on the liposomes suggested that the complement system was activated.  相似文献   

15.
Sugar excipients are shown to reduce the adsorption of ribonuclease A, bovine serum albumin, and hen egg white lysozyme at the liquid-solid interface. The amount of protein adsorbed decreased as the concentration of the sugar increased. At the same sugar concentration, the ability of sugars to reduce protein adsorption followed the trend: trisaccharides > disaccharides > 6-carbon polyols > monosaccharides. This trend in adsorbed protein amounts among sugars was explained by stabilization of the protein native state in solution by the sugar excipients. The heat of solution of the amorphous saccharide was found to correlate with the amount of protein adsorbed.  相似文献   

16.
Nonspecific adsorption of serum proteins occurs with immunoadsorption of antibodies on Sepharose-myoglobin and Sepharose-staphylococcal nuclease immunoadsorbents. This adsorption results from nonspecific hydrophobic and ionic interactions between these serum proteins and the immunoadsorbents. Various preelution washing procedures were examined, and only borate-saline buffer (pH 8,5) containing a nonionic detergent, Tween 20 (0,1%), and a high salt concentration (1 m NaCl) eliminated or significantly reduced nonspecific adsorption without appreciably diminishing the recovery of specifically adsorbed antibodies.  相似文献   

17.
《Process Biochemistry》2007,42(4):745-750
Changes in the cell surface hydrophobicity (CSH) of bacteria Zymomonas mobilis 113S were examined in response to varied environmental conditions (temperature and phase of growth, concentration or type of carbon source, the presence of amphiphilic compounds). The values of CSH were elevated with a decreased growth rate over the time of cultivation up to 20–22% at the stationary phase. CSH values increased proportionally with the growth of cultivation temperature and concentration of carbon source (glucose or sucrose) or amphiphilic compound (aliphatic alcohols, Tween80) in the medium. Replacement of sucrose by glucose and the presence of Tween20 in the growth medium resulted in reduced values of CSH. An inverse relationship was detected between the number of attached cells to the hydrophilic glass surfaces and the CSH values of Z. mobilis whereas direct linear relationship was observed for hydrophobic surfaces. Permeation rates of the fluorescent probe (NPN) into the cells were directly proportional to the concentration of extracellular protein in the medium and to the values of CSH indicating the impaired barrier function for more hydrophobic cells. The multiple correlation between the CSH values and absorption indices of FT-IR spectra at the fingerprint region (866–1088 cm−1) suggests the possible contribution of carbohydrates and/or lipopolysaccharides in observed changes of Z. mobilis hydrophobicity.  相似文献   

18.

The influence of saliva concentration, saliva total protein content and the wetting characteristics of exposed solids on in vitro film formation was studied by the technique of in situ ellipsometry. The rates and plateau values of adsorption (45 min) at solid/liquid interfaces (hydrophilic silica and hydrophobic methylated silica surfaces) were determinated for human parotid (HPS) and submandibular/sublingual (HSMSLS) resting saliva solutions (0.1 and 1.0%, (v/v), saliva in phosphate buffered saline). Adsorption rates were related to a model assuming mass transport through an unstirred layer adjacent to the surface. The results showed that the adsorption was rapid, concentration dependent and higher on hydrophobic than on hydrophilic surfaces. Analysis of the influence of protein concentration on the adsorbed amounts demonstrated an interaction between protein concentration and the two surfaces for HPS and HSMSLS, respectively. This may indicate differences in binding mode. Inter‐individual differences were found not to be significant at the 1% level of probability. Comparison of the observed adsorption and calculated diffusion rates suggest that on hydrophilic surfaces initial adsorption of proteins diffusing at rates corresponding to those of statherin and aPRPs takes place, whereas on hydrophobic surfaces lower molecular mass compounds appear to be involved.  相似文献   

19.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   

20.
The total internal reflection/fluorescence photobleaching recovery (TIR/FPR) technique (Thompson et al. 1981. Biophys. J. 33:435) is used to study adsorbed bovine serum albumin dynamics at a quartz glass/aqueous buffer interface. Adsorbed fluorescent labeled protein is bleached by a brief flash of the evanescent wave of a focused totally internally reflected laser beam. The rates of adsorption/desorption and surface diffusion determine the subsequent fluorescence recovery. The protein surface concentration is low enough to be proportional to the observed fluorescence and high enough to insure that the observed recovery rates arise mainly from adsorbed rather than bulk protein dynamics. The photobleaching recovery curves for rhodamine-labeled bovine serum albumin reveal both an irreversibly bound state and a multiplicity of reversibly bound states. The relative amount of reversible to irreversible adsorption increases with increasing bulk protein concentration. Since the adsorbed protein concentration appears to be too high to pack into a homogeneous surface monolayer, the wide range of desorption rates possibly results from multiple layers of protein on the surface. Comparison of the fluorescence recovery curves obtained with various focused laser beam widths suggests that some of the reversibly bound bovine serum albumin molecules can surface diffuse. Aside from their relevance to the surface chemistry of blood, these results demonstrate the feasibility of the TIR/FPR technique for measuring molecular dynamics on solid surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号