首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional gel electrophoresis (2-DE)is a core proteomic technique to studyprotein expression and function in livingorganisms. Although it has been extensivelyused for investigation of bacterial, yeast,animal and plant tissue cells, there islimited information about the use of 2-DEin microalgal research. In this study, anumber of key chemical reagents, includingacetone, trichloroacetic acid, urea,thiourea, dithiothreitol, and tributylphosphine, were quantitatively evaluatedfor 2-DE of green microalgae, using Haematococcus pluvialis as a model system.The goal was to maximize the number andstaining intensity of protein spots whileminimizing streaking and smearing on thesecond dimensional SDS gel. Compared tonon-frozen immobilized pH gradients (IPG)strips, freezing of the IPG strips at –20 °C after isoelectric focusing (IEF)enhanced protein resolubilization andtransfer into the SDS gel, and thusimproved resolution while eliminatingvertical point streaking on the SDS gel. Itwas also confirmed that manipulation ofsample loading capacity is a simple,effective purification strategy forselective investigation of the proteins ofinterest and of varying abundances. Theprotocol was also successfully applied toprofiling protein expression in H.pluvialis under external stressconditions, indicating its potentialusefulness in further proteomics studies ofthis organism and related species.  相似文献   

2.
A method for the global analysis of yeast intracellular metabolites, based on electrospray mass spectrometry (ES-MS), has been developed. This has involved the optimization of methods for quenching metabolism in Saccharomyces cerevisiae and extracting the metabolites for analysis by positive-ion electrospray mass spectrometry. The influence of cultivation conditions, sampling, quenching and extraction conditions, concentration step, and storage have all been studied and adapted to allow direct infusion of samples into the mass spectrometer and the acquisition of metabolic profiles with simultaneous detection of more than 25 intracellular metabolites. The method, which can be applied to other micro-organisms and biological systems, may be used for comparative analysis and screening of metabolite profiles of yeast strains and mutants under controlled conditions in order to elucidate gene function via metabolomics. Examples of the application of this analytical strategy to specific yeast strains and single-ORF yeast deletion mutants generated through the EUROFAN programme are presented.  相似文献   

3.
4.
An economical protocol, which is simple, rapid and reproducible for the production of maltose by enzymatic hydrolysis of tapioca starch, has been optimized. The protocol involves liquefaction of 35% (w/w) tapioca starch by bacterial -amylase at 78±2°C to 3 to 5% (w/w) reducing sugars, followed by maximal (85±3% w/w maltose equivalent) saccharification with barley -amylase and pullulanase at 50°C for 24 to 30 h. The post-saccharification recovery protocol comprised decolourization by charcoal, de-dextrinization by denatured spirit precipitation, de-ionization by passage through cation and anion exchangers and dehydration by vacuum drying. A white crystalline maltose powder was obtained with specifications comparable to commercial high purity maltose. The protocol yields at least 60% (w/w) recovery of maltose and is suitable for use by the pharmaceutical industry. The protocol is unique in that it utilizes cheap and easily hydrolysed tapioca starch, leaves no mother liquor, enabling higher recovery of maltose, and allows almost quantitative recovery of limit maltodextrins, a value-added marketable by-product.  相似文献   

5.
6.
Chemical ecology is an ever‐expanding field with a growing interest in population‐ and community‐level studies. Many such studies are hindered due to lack of an efficient and accelerated protocol for large‐scale sampling and analysis of chemical compounds. Here, we present an optimized protocol for such large‐scale study of volatiles. A large‐scale in situ study to understand role of semiochemicals in variation in mating success of lekking blackbuck was conducted. Suitable methods for sampling and statistical analysis were identified by testing and comparing the efficiencies of available techniques to reduce analysis time while retaining sensitivity and comprehensiveness. Solid‐phase extraction using polydimethylsiloxane, analysis using a semiautomated detection of retention time and base peak, and statistical analysis using random forest algorithm were identified as the most efficient methods for large‐scale in situ sampling and analysis of volatiles. The protocol for large‐scale volatile analysis can facilitate evolutionary and metaecological studies of volatiles in situ from all types of biological samples. The protocol has potential for wider application with the analysis and interpretation methods being suitable for all kinds of semiochemicals, including nonvolatile chemicals.  相似文献   

7.
The resources available from Arabidopsis thaliana for interpreting functional attributes of wheat EST are reviewed. A focus for the review is a comparison between wheat EST sequences, generated from developing endosperm tissue, and the complete genomic sequence from Arabidopsis. The available information indicates that not only can tentative annotations be assigned to many wheat genes but also putative or unknown Arabidopsis gene annotations can be improved by comparative genomics. Electronic Publication  相似文献   

8.
The genome of spinach single chromosome complement is about 1000 Mbp, which is the model material to study the molecular mechanisms of plant sex differentiation. The cytological study showed that the biggest spinach chromosome (chromosome 1) was taken as spinach sex chromosome. It had three alleles of sex-related X, X m and Y. Many researchers have been trying to clone the sex-determining genes and investigated the molecular mechanism of spinach sex differentiation. However, there are no successful cloned reports about these genes. A new technology combining chromosome microdissection with hybridization-specific amplification (HSA) was adopted. The spinach Y chromosome degenerate oligonucleotide primed-PCR (DOP-PCR) products were hybridized with cDNA of the male spinach flowers in florescence. The female spinach genome was taken as blocker and cDNA library specifically expressed in Y chromosome was constructed. Moreover, expressed sequence tag (EST) sequences in cDNA library were cloned, sequenced and bioinformatics was analysed. There were 63 valid EST sequences obtained in this study. The fragment size was between 53 and 486 bp. BLASTn homologous alignment indicated that 12 EST sequences had homologous sequences of nucleic acids, the rest were new sequences. BLASTx homologous alignment indicated that 16 EST sequences had homologous protein-encoding nucleic acid sequence. The spinach Y chromosome-specific EST sequences laid the foundation for cloning the functional genes, specifically expressed in spinach Y chromosome. Meanwhile, the establishment of the technology system in the research provided a reference for rapid cloning of other biological sex chromosome-specific EST sequences.  相似文献   

9.
The functional method identifies the hip joint centre (HJC) as the centre of rotation of the femur relative to the pelvis during an ad hoc movement normally recorded using stereophotogrammetry. This method may be used for the direct determination of subject-specific HJC coordinates or for creating a database from which regression equations may be derived that allow for the prediction of those coordinates. In order to contribute to the optimization of the functional method, the effects of the following factors were investigated: the algorithm used to estimate the HJC coordinates from marker coordinates, the type and amplitude of the movement of the femur relative to the pelvis, marker cluster location and dimensions, and the number of data samples. This was done using a simulation approach which, in turn, was validated using experiments made on a physical analogue of the pelvis and femur system. The algorithms used in the present context were classified and, in some instances, modified in order to optimize both accuracy and computation time, and submitted to a comparative evaluation. The type of movement that allowed for the most accurate results consisted of several flexion-extension/abduction-adduction movements performed on vertical planes of different orientations, followed by a circumduction movement. The accuracy of the HJC estimate improved, with an increasing rate, as a function of the amplitude of these movements. A sharp improvement was found as the number of the photogrammetric data samples used to describe the movement increased up to 500. For optimal performance with the recommended algorithms, markers were best located as far as possible from each other and with their centroid as close as possible to the HJC. By optimizing the analytical and experimental protocol, HJC location error not caused by soft tissue artefacts may be reduced by a factor of ten with a maximal expected value for such error of approximately 1mm.  相似文献   

10.
11.
Programmed cell death-1 (PD1) is an inhibitory receptor expressed on the activated T and B cells. Binding of PD1 to its ligands, PD-L1 and PD-L2 has led to deliver an inhibitory signal into the activated T cells. Recently, blocking PD1/PD-L1 pathway has emerged as a new treatment paradigm across a broad spectrum of malignancies. Remarkable clinical responses of monoclonal antibodies specific for PD-1 or its ligands in patients with many different types of cancer, attracted several pharmaceutical companies and researchers to investigate the agents that block PD1/PD-L1 signal. The safety and efficacy of the agents are needed to examine in the preclinical studies. In this study, we optimized a facile and cost-effective protocol for in vitro generation and functional analysis of human PD1/PD-L1 pathway. Activation of CD8?+?CD279?+?T cell was performed by anti-CD3 and D28 antibodies and the recombinant PD-L1 was used for inactivation of T cells through PD1/PD-L1 pathway. In this protocol, T-cell cytokine production (IL-2 and IFN-γ) and proliferation assay confirmed that a measurable PD1/PD-L1 signal was generated. We expected that in vitro PD1/PD-L1 signal that has been optimized in this study will serve as a valuable protocol for preclinical studies involving PD1/PD-L1 pathway.  相似文献   

12.
13.
Using previously reported protocols, electroporation of 21 very sensitive human cell lines showed poor results with high mortality and low transfection efficiency. Therefore, the influence of several electroporation parameters on transfection success was analyzed. The adjustment of the time constant proved to be most important for optimization of transfection results. Time constant was modulated by changing medium resistance via volume or ionic strength, yielding an average transfection efficiency of 25% and mortality rates below 60%.  相似文献   

14.
Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist. Here, we review recent successes and challenges of protein engineering for optimized therapeutic efficacy.  相似文献   

15.
Slippage is an important sequencing problem that can occur in EST projects. However, very few studies have addressed this. We propose three new methods to detect slippage artifacts: arithmetic mean method, geometric mean method, and echo coverage method. Each method is simple and has two different strategies for processing sequences: suffix and subsequence. Using the 291,689 EST sequences produced in the SUCEST project, we performed comparative tests between our proposed methods and the SUCEST method. The subsequence strategy is better than the suffix strategy, because it is not anchored at the end of the sequence, so it is more flexible to find slippage at the beginning of the EST. In a comparison with the SUCEST method, the advantage of our methods is that they do not discard the majority of the sequences marked as slippage, but instead only remove the slipped artifact from the sequence. Based on our tests the echo coverage method with subsequence strategy shows the best compromise between slippage detection and ease of calibration.  相似文献   

16.
17.
The hanging drop three-dimensional culture technique allows cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. The fragile acini are, however, difficult to preserve during processing steps for advanced microscopic investigation. We describe adaptations to the protocol for handling of hanging drop cultures to include investigation using confocal, scanning, and electron microscopy, with minimal loss of cell culture components.  相似文献   

18.
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2. Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.  相似文献   

19.
In the past decade, molecular probe‐based methods have proved successful in improving both the efficiency and accuracy of the identification of microorganisms, especially those that are devoid of distinct morphological features. However until recently, these methods had the major drawback of being limited to the identification of only one or just a few species at a time. With the use of DNA microarrays, it is possible to identify large numbers of taxa on a single‐glass slide, the so‐called phylochip. There are numerous microarray protocols in the literature. These protocols share the same principles, but vary in details, e.g. labelling approach or detergent concentration in the washing buffer. In this study, we show that even small variations in hybridization protocols can have a strong impact on the outcome of the microarray hybridization. An optimized protocol for species identification on phylochips is presented. The optimized protocol is the result of a joined effort of three laboratories to develop phylochips for microbial species identification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号