首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems.  相似文献   

2.
Summary A mutant plasmid, pX, derived from the 1453 base pair small plasmid, YARp1 (or TRP1 RI circle), consists of 849 base pairs of DNA bearing the TRP1 gene and the ARS1 sequence of Saccharomyces cerevisiae and, unlike YARp1 and other commonly used yeast plasmids, highly multimerizes in a S. cerevisiae host. The multimerization of pX was dependent on RAD52, which is known to be necessary for homologous recombination in S. cerevisiae. Based upon this observation, a regulated system of multimerization of pX with GAL1 promoter-driven RAD52 has been developed. We conclude that the regulated multimerization of pX could provide a useful model system to study genetic recombination in the eukaryotic cell, in particular to investigate recombination intermediates and the effects of various trans-acting mutations on the multimerization and recombination of plasmids.  相似文献   

3.
Saccharomyces sp. SK0704 (further defined as SK0704) isolated from long-term-ripening kimchi was identified by a biochemical method with an API kit; its physiology was found to be very similar to that of S. cerevisiae ATCC 26603 (further defined as ATCC 26603), except in terms of starch utilization. SK0704 did not excrete extracellular glucoamylase, but utilized starch as a sole carbon source under only aerobic conditions. Crude enzyme excreted from SK0704 catalyzed the saccharification of starch to glucose, but ATCC 26603 did not. The PCR product obtained using the chromosomal DNA of SK0704 and the primers designed on the basis of the extracellular glucoamylase-coding gene of S. diastaticus was homologous with the intracellular sporulation-specific glucoamylase of S. cerevisiae. SDS-PAGE pattern of soluble protein extracted from yeast cells grown on glucose was greatly different from that on starch. From these results, we proposed that the SK0704 may have a specific physiological function for starch catabolism such as membrane transport system and intracellular sac-charification of starch.  相似文献   

4.
Gsp1p is a small nuclear-located GTP binding protein from the yeast Saccharomyces cerevisiae. It is highly conserved among eucaryotic cells and is involved in numerous cellular processes, including nucleocytoplasmic trafficking of macromolecules. To learn more about the GSP1 structure/function, we have characterized its Candida albicans homologue. CaGsp1p is 214 amino acids long and displays 91% identity to the ScGsp1p. There is functional complementation in S. cerevisiae, and its mRNA is constitutively expressed in the diploid C. albicans grown under various physiological conditions. Disruption of both alleles was not possible, suggesting that it could be an essential gene, but heterozygous mutants exhibited genomic instability.  相似文献   

5.
Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).  相似文献   

6.
Summary A double mutant sod1/pgk1 strain of Saccharomyces cerevisiae has been constructed in order to investigate the effects of different environmental conditions on yeast physiology, plasmid stability, and superoxide dismutase (SOD) production. Strains were transformed with yeast episomal plasmids (YEp) containing both PGK1 and SOD1 genes and were grown on fermentable carbon sources and under vigorous aeration. Under these conditions, the presence of the PGK1 gene was made essential for growth and both genes were efficiently expressed. However, plasmid-borne PGK1 was found not to increase the stability of YEp vectors in batch cultures of Pgk cells. Paradoxically, plasmid stability increased during the respiratory phase of growth. An investigation of the metabolism of Pgk cells demonstrated that these glycolytic pathway mutants do not appreciably metabolize glycerol. Thus Pgk+, plasmid-containg, cells have a selective advantage during the respiratory phase of batch growth since they can utilize both glycerol and ethanol. Correspondence to: S. G. Oliver  相似文献   

7.
Summary We have isolated Saccharomyces cerevisiae mutants, smp, showing stable maintenance of plasmid pSRI, a Zygosaccharomyces rouxii plasmid. The smp mutants were recessive and were classified into at least three different complementation groups. The three mutants also showed increased stability of YRp plasmids and the mutations are additive for plasmid stability. One mutation, smp1, confers a respiration-deficient (rho 0) phenotype and several Rho mutants independently isolated by ethidium bromide treatment of the same yeast strain also showed increased stabilities of pSR1 and YRp plasmids. The wild-type S. cerevisiae cells showed a strongly biased distribution of pSR1 molecules as well as YRp plasmids to the mother cells at mitosis, while the smpf mutant did not show this bias. Another mutation, smp3, at a locus linked to ade2 on chromosome XV, confers temperature-sensitive growth. The SMP3 gene encodes a 59.9 kDa hydrophobic protein and disruption of the gene is lethal.  相似文献   

8.
Production of glucoamylase by recombinant Saccharomyces cerevisiae C468/pGAC9 (ATCC 20690) in a continuous stirred tank bioreactor was studied at different dilution rates. Plasmid stability was found to be growth (dilution rate) dependent; it increased with the dilution rate. Bioreactor productivity and specific productivity also increased with the dilution rate. A kinetic equation was used to model the plasmid stability kinetics. The growth rate ratio between plasmid-carrying and plasmid-free cells decreased from 1.397 to 1.215, and segregational instability or probability of plasmid loss from each cell division decreased from 0.059 to 0.020 as the dilution rate increased from 0.10 to 0.37 1/h. The specific growth rates increased with dilution rate, while the growth rate difference between plasmid-carrying and plasmid-free cell populations was negligible. This was attributed to the low copy number of the hybrid plasmid pGAC9. Thus, the growth rate had no significant effect on plasmid instability. The proposed kinetics was consistent with experimental results, and the model simulated the experimental data well.  相似文献   

9.
Summary Phleomycin, a water-soluble antibiotic of the bleomycin family is as effective against Saccharomyces cerevisiae cells as against Escherichia coli cells. The ble gene of transposon Tn5, which confers resistance to phleomycin, was inserted in place of the iso-1-cytochrome C (CYC1) gene on an autonomously replicative multicopy E. coli-yeast shuttle plasmid. Higher resistance levels are obtained in S. cerevisiae when the region immediately upstream from the initiation codon conforms to the nucleotide sequence stringencies observed in almost every yeast gene. The expected regulation pattern of the whole CYC1 promoter confers different phleomycin resistance levels to the cell under varying physiological conditions. Partial deletions in the CYC1 promoter lead to changes in the resistance level of cells which are mostly accounted for by the removal of known positive and negative regulatory elements. Some of the vector constructions allow direct selection of phleomycin-resistant transformants on rich media.  相似文献   

10.
Actinidin is a protease found abundantly in the fruit of Actinidia chinensis or Kiwi fruit. The overproduction of this protein in microorganisms, especially using the yeast Saccharomyces cerevisiae, would be economically valuable as it would simplify the extraction and purification of the protein. It was observed, however, that the yeast growth rate was reduced by the presence of externally supplied actinidin in the growth medium. It was also observed that actinidin present in the yeast growth medium was partially degraded. Several actinidin-encoding gene variants have been cloned in a yeast expression and secretion vector. It was observed that different actinidin gene constructions influenced the growth rate of S. cerevisiae in complete media. Recombinant plasmids carrying only the mature actinidin-encoding DNA sequences reduced yeast transformability significantly and had the least stability. The results thus suggest that the presence of a recombinant plasmid carrying a gene of a potentially toxic protein may result in a deleterious effect on the host cell.  相似文献   

11.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

12.
A segregated mathematical model was developed for the analysis and interpretation of cultivation data of growth of the recombinant yeast Saccharomyces cerevisiae on multiple substrates (glucose, maltose, pyruvate, ethanol, acetate, and galactose). The model accounts for substrate consumption, plasmid stability, and production level of a model protein, a modified nucleocapsid protein of the Puumala virus. Recombinant nucleocapsid proteins from different Hantaviruses have previously been demonstrated as suitable antigens for diagnostics as well as for sero‐epidemiological studies. The model is based on a system of 10 nonlinear ordinary differential equations and accounts for the influence of various factors, e.g., selective pressure for enhancing plasmid stability by formaldehyde or the toxic effects of the intracellular accumulation of the heterologous protein on cell growth and product yield. The model allows the growth of two populations of cells to be simulated: plasmid‐bearing and plasmid‐free yeast cells, which have lost the plasmid during cultivation. Based on the model, sensitivity studies in respect to parameter changes were performed. These enabled, for example, the evaluation of the impact of an increase in the initial concentration of nutrients and growth factors (e.g., vitamins, microelements, etc.) on the biomass yield and the heterologous protein production level. As expected, the productivity of the heterologous protein in S. cerevisiae is closely correlated with plasmid stability. The 25 free model parameters, including the yield coefficients for different growth stages and dynamic constants, were estimated by nonlinear techniques, and the model was validated against a data set not used for parameter estimation. The simulation results were found to be in good agreement with the experimental data.  相似文献   

13.
Two bioreactor continuous cultures, at anaerobic and aerobic conditions, were carried out using a recombinant Saccharomyces cerevisiae strain that over-expresses the homologous gene EXG1. This recombinant system was used to study the effect of dissolved oxygen concentration on plasmid stability and gene over-expression. Bioreactor cultures were operated at two dilution rates (0.14 and 0.03 h–1) to investigate the effect of other process parameters on EXG1 expression. Both cultures suffered severe plasmid instability during the first 16 generations. Segregational plasmid loss rate for the aerobic culture was two-fold that of the anaerobic operation. In spite of this fact, exo--glucanase activity at aerobic conditions was 12-fold that of the anaerobic culture. This maximal activity (30 U ml–1) was attained at the lowest dilution rate when biomass reached its greatest value and glucose concentration was zero.  相似文献   

14.
Summary A DNA plasmid resembling 2 m DNA of Saccharomyces cerevisiae, pSR1, isolated from a strain of Zygosaccharomyces rouxii, has a cis-acting region, Z, for plasmid stability. The Z region was delimited to a sequence of at most 383 bp in a small unique region of the plasmid. The Z region is high in A:T pairs and contains three different pairs of short (ca. 25 bp) inverted repeats with 65% to 79% homology and three copies of direct repeats of 24 to 27 bp in length with 67% to 72% homology, but does not encode a noteworthy open reading frame. It was suggested that the Z region interacts with the S product(s) encoded by the same plasmid and with a specific host factor, but not with the other stabilization factor encoded by the P locus on the sPR1 molecule.  相似文献   

15.
Summary The stability of the plasmid pJDB 248 has been measured in theS. cerevisiae strain S150-2B growing in a chemostat under conditions of glucose limitation. It was found that reducing the growth rate of the culture led to a more rapid loss of the plasmid from the cells.  相似文献   

16.
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.  相似文献   

17.
Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae with respect to ethanol formation under aerobic conditions could be caused by differences in the regulation of this enzyme activity. We have identified and cloned three genes encoding functional pyruvate decarboxylase enzymes ( PDC genes) from the type strain of S. kluyveri (Sk-PDC11, Sk-PDC12 and Sk-PDC13). The regulation of pyruvate decarboxylase in S. kluyveri was studied by measuring the total level of Sk-PDC mRNA and the overall enzyme activity under various growth conditions. It was found that the level of Sk-PDC mRNA was enhanced by glucose and oxygen limitation, and that the level of enzyme activity was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae and S. kluyveri each have three PDC genes, these have apparently arisen by independent duplications and specializations in each of the two yeast lineages.Communicated by C. P. Hollenberg  相似文献   

18.
The effects of medium composition, nutrient limitation and dilution rate on the loss of the recombinant plasmid pLG669-z and plasmid-borne β -galactosidase expression were studied in batch and chemostat cultures of Saccharomyces cerevisiae strain CGpLG. The difference in growth rates between plasmid-free and plasmid-containing cells (Δμ) and the rate of segregation (R) were determined and some common factors resulting from the effect of medium composition on plasmid loss were identified. Glucose-limited chemostat cultures of CGpLG grown on defined medium were more stable at higher dilution rates and exhibited Δμ -dominated plasmid loss kinetics. Similar cultures grown on complex medium were more stable at lower dilution rates and exhibited R-dominated plasmid loss kinetics. Overall plasmid stability was greatest in phosphate-limited chemostat cultures grown on defined medium and was least stable in magnesium-limited cultures grown on defined medium. Δμ decreased and R increased with increased dilution rate, irrespective of medium composition. Increased plasmid loss rates at high or low dilution rates would appear to be characteristic of loss kinetics dominated by R or Δμ, respectively. Growth of glucose-limited chemostat cultures on complex medium decreased Δμ values but increased R values, in comparison to those cultures grown on defined medium. Any increased stability that a complex medium-induced reduction of Δμ may have conferred was counteracted by an increased R value. Increased β-galactosidase productivity was correlated with increased plasmid stability only in glucose-limited chemostat cultures grown on defined medium and not in those grown on complex medium. Previous studies have yielded contrasting responses with regard to the effect of dilution rate on recombinant plasmid loss from S. cerevisiae. Our findings can account for these differences and may be generally valid for the stability of similar yeast plasmid constructs. This information would facilitate the design of bioprocesses, where recombinant plasmid instability results in reduced culture productivity. Received 08 July 1996/ Accepted in revised form 14 January 1997  相似文献   

19.
公认食品安全的酿酒酵母(Saccharomyces cerevisiae)是合成生物学中被广泛研究的底盘细胞,常作为生产高值或大宗化学品的微生物细胞工厂。近年来,通过各种代谢工程改造策略,已有大量化学品的合成途径在酿酒酵母中建立并优化,且部分化学品具备了产业化价值。作为真核生物,酿酒酵母具有完整的细胞内膜系统及其组成的复杂细胞器区室,而这些细胞器区室往往含有某些化学品合成所必需的较高浓度前体底物(如线粒体中的乙酰辅酶A),或更加充足的酶、辅因子、能量等,可为目标产物的生物合成提供更适宜的物理、化学环境,但同时不同细胞器的结构特点有时也成为特定化合物合成的障碍。为此,研究人员在深入分析不同细胞器自身特点的基础上,结合目标化学品合成途径与细胞器之间的适配度,对细胞器开展了大量针对性改造工作以提高产物合成效率。本文详细综述了酿酒酵母中线粒体、过氧化物酶体、高尔基体、内质网、脂滴和液泡等细胞器的途径改造及优化策略,以及利用细胞器区室化合成化学品的研究进展,并对目前存在的困难和挑战以及未来研究方向进行了总结与展望。  相似文献   

20.
The use of selected yeasts for winemaking has clear advantages over the traditional spontaneous fermentation. The aim of this study was to select an indigenous Saccharomyces cerevisiae yeast isolate in order to develop a regional North Patagonian red wine starter culture. A two-step selection protocol developed according to physiological, technological and ecological criteria based on killer interactions was used. Following this methodology, S. cerevisiae isolate MMf9 was selected among 32 indigenous yeasts previously characterized as belonging to different strains according to molecular patterns and killer biotype. This isolate showed interesting technological and qualitative features including high fermentative power and low volatile acidity production, low foam and low sulphide production, as well as relevant ecological characteristics such as resistance to all indigenous and commercial S. cerevisiae killer strains assayed. Red wines with differential volatile profiles and interesting enological features were obtained at laboratory scale by using this selected indigenous strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号