首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid sequence of rat mast cell protease I (chymase)   总被引:8,自引:0,他引:8  
The amino acid sequence has been determined for rat mast cell protease I (RMCP I), a product of peritoneal mast cells. The active enzyme contains 227 residues, including three corresponding to the catalytic triad characteristic of serine protease (His-57, Asp-102, and Ser-195 in chymotrypsin). A computer search for homology indicates 73% and 33% sequence identity of RMCP I with rat mast cell protease II from mucosal mast cells and bovine chymotrypsin A, respectively. When the structure of RMCP I is compared to those of cathepsin G from human neutrophils and two proteases expressed in activated lymphocytes, 48-49% of the sequences are identical in each case. RMCP I has six half-cystine residues at the same positions as in RMCP II, cathepsin G, and the two lymphocyte proteases, suggesting disulfide pairs identical with those reported for RMCP II. A disulfide bond near the active site seryl residue and substrate binding site, present in pancreatic and plasma serine proteases, is not found in RMCP I or in the other cellular proteases. These results indicate that RMCP I and other chymotrypsin-like proteases of granulocyte and lymphocyte origin are more closely related to each other than to the pancreatic or plasma serine proteases.  相似文献   

2.
Human rhinoviruses, like other picornaviruses, encode a cysteine protease (designated 3C) which cleaves mainly at viral Gln-Gly pairs. There are significant areas of homology between picornavirus 3C cysteine proteases and cellular serine proteases (e.g. trypsin), suggesting a functional relationship between their catalytic regions. To test this functional relationship, we made single substitutions in human rhinovirus type 14 protease 3C at seven amino acid positions which are highly conserved in the 3C proteases of animal picornaviruses. Substitutions at either His-40, Asp-85, or Cys-146, equivalent to the trypsin catalytic triad His-57, Asp-102, and Ser-195, respectively, completely abolished 3C proteolytic activity. Single substitutions were also made at either Thr-141, Gly-158, His-160, or Gly-162, which are equivalent to the trypsin specificity pocket region. Only the mutant with a conservative Thr-141 to Ser substitution exhibited proteolytic activity, which was much reduced compared with the parent. These results, together with immunoprecipitation data which indicate that Asp-85, Thr-141, and Cys-146 lie in accessible surface regions, suggest that the catalytic mechanism of picornavirus 3C cysteine proteases is closely related to that of cellular trypsin-like serine proteases.  相似文献   

3.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

4.
K W Jackson  J Tang 《Biochemistry》1982,21(26):6620-6625
The complete amino acid sequence of streptokinase has been determined by automated Edman degradation of its cyanogen bromide and proteolytic fragments. The protein consists of 415 amino acid residues. Sequence microheterogeneity was found at two positions. The NH2-terminal 245 residues of streptokinase are homologous to the sequences of several serine proteases including bovine trypsin and Streptomyces griseus proteases A and B. The sequence alignment suggests that the active-site histidine-57 has changed to a glycine in streptokinase. The other active-site residues, aspartyl-102 and serine-195, are, however, present at the expected positions. Streptokinase also contains internal sequence homology between the NH2-terminal 173 residues and a COOH-terminal 162-residue region between residues 254 and 415. Moderate homology in predicted secondary structures also exists between these two regions. Although streptokinase is not a protease, these observations suggest that it has evolved from a serine protease by gene duplication and fusion. A COOH-terminal region of about 80 residues is apparently deleted from the second half of the duplicated structures. These observations further suggest that the three-dimensional structure of streptokinase likely contains two independently folded domains, each homologous to serine proteases.  相似文献   

5.
Prolyl endopeptidase is a cytoplasmic serine protease. The enzyme was purified from porcine kidney, and oligonucleotides based on peptide sequences from this protein were used to isolate a cDNA clone from a porcine brain library. This clone contained the complete coding sequence of prolyl endopeptidase and encoded a polypeptide with a molecular mass of 80,751 Da. The deduced amino acid sequence of prolyl endopeptidase showed no sequence homology with other known serine proteases. [3H]Diisopropyl fluorophosphate was used to identify the active-site serine of prolyl endopeptidase. One labeled peptide was isolated and sequenced. The sequence surrounding the active-site serine was Asn-Gly-Gly-Ser-Asn-Gly-Gly. This sequence is different from the active-site sequences of other known serine proteases. This difference and the lack of overall homology with the known families of serine proteases suggest that prolyl endopeptidase represents a new type of serine protease.  相似文献   

6.
1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.  相似文献   

7.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

8.
The amino acid sequence of a protease, protein C activator, from Agkistrodon contortrix contortrix venom was determined. Peptide fragments obtained by chemical or enzymatic cleavage of the S-carboxymethylated protein were purified by gel filtration and reverse-phase high-performance liquid chromatography. The present study demonstrates that protein C activator from A. contortrix contortrix venom is a trypsin-type serine protease that is composed of 231 residues with a molecular weight of 25,095 for the polypeptide portion of the molecule. By analogy to the mammalian serine proteases, the catalytic triad in venom protein C activator consists of His-40, Asp-85, and Ser-177. The protein also contains three N-linked glycosylation sites at Asn-21, Asn-78, and Asn-129. The amino acid sequence of protein C activator exhibits a high degree of sequence identity with other snake venom proteases: 73% with batroxobin, 68% with flavoxobin, and 55% with Russell's viper venom factor V activator.  相似文献   

9.
A major protease from human breast cancer cells was previously detected by gelatin zymography and proposed to play a role in breast cancer invasion and metastasis. To structurally characterize the enzyme, we isolated a cDNA encoding the protease. Analysis of the cDNA reveals three sequence motifs: a carboxyl-terminal region with similarity to the trypsin-like serine proteases, four tandem cysteine-rich repeats homologous to the low density lipoprotein receptor, and two copies of tandem repeats originally found in the complement subcomponents C1r and C1s. By comparison with other serine proteases, the active-site triad was identified as His-484, Asp-539, and Ser-633. The protease contains a characteristic Arg-Val-Val-Gly-Gly motif that may serve as a proteolytic activation site. The bottom of the substrate specificity pocket was identified to be Asp-627 by comparison with other trypsin-like serine proteases. In addition, this protease exhibits trypsin-like activity as defined by cleavage of synthetic substrates with Arg or Lys as the P1 site. Thus, the protease is a mosaic protein with broad spectrum cleavage activity and two potential regulatory modules. Given its ability to degrade extracellular matrix and its trypsin-like activity, the name matriptase is proposed for the protease.  相似文献   

10.
Two clones were isolated by screening a shrimp hepatopancreas cDNA library with a DNA fragment obtained by PCR amplification using two oligonucleotides based on the partial protein sequence of Penaeus vanameii chymotrypsin purified earlier. One of these clones, PVC 7 contains a complete cDNA coding for a serine protease. The deduced amino acid sequence shows the existence of a 270 residue-long preproenzyme containing a highly hydrophobic signal peptide of 14 amino acids. This suggests the existence of a putative zymogen form of the enzyme containing a 30 amino acid-long peptide which is cleaved to give a mature protein of 226 residues. A highly preferred codon usage is observed for this protein. The other obtained cDNA was found to encode the less predominant variant of the protein. Sequence alignments show that shrimp chymotrypsin is highly homologous with crab collagenase (77% homology taking into account the same amino acid at the same position, and 83% homology taking into account amino acids with conserved function) and that it is more similar to mouse trypsin (41% homology of strictly conserved amino acids) than to hornet chymotrypsin (35% homology).  相似文献   

11.
The cDNA encoding Atlantic cod (Gadus morhua) chymotrypsinogen B has been isolated and sequenced. Its deduced amino acid sequence consists of a 16-residue signal sequence and a mature polypeptide of 247 residues, being two residues longer than its vertebrate analogs. This mature polypeptide corresponds to a calculated molecular mass of 26.5 kDa and shares 70% sequence identity with cod chymotrypsinogen A. However, the identity between cod chymotrypsinogen B and its other vertebrate analogues is 63-66%. In common with most fish serine proteases, cod chymotrypsinogen B contains a high number of methionine residues. The presence of a threonine instead of a highly conserved serine residue at position 189 is a novel characteristic of this enzyme. Cod chymotrypsin B, as its type B vertebrate analogs, has an alanine at position 226, whereas a glycine is most commonly found at this position in the type A chymotrypsins.  相似文献   

12.
Nuclear inclusion a (NIa) protease of tobacco vein mottling virus is responsible for the processing of the viral polyprotein into functional proteins. In order to identify the active-site residues of the TVMV NIa protease, the putative active-site residues, His-46, Asp-81 and Cys-151, were mutated individually to generate H46R, H46A, D81E, D81N, C151S, and C151A, and their mutational effects on the proteolytic activities were examined. Proteolytic activity was completely abolished by the mutations of H46R, H46A, D81N, and C151A, suggesting that the three residues are crucial for catalysis. The mutation of D81E decreased kcat marginally by about 4.7-fold and increased Km by about 8-fold, suggesting that the aspartic acid at position 81 is important for substrate binding but can be substituted by glutamate without any significant decrease in catalysis. The replacement of Cys-151 by Ser to mimic the catalytic triad of chymotrypsin-like serine protease resulted in the drastic decrease in kcat by about 1,260-fold. This result might be due to the difference of the active-site geometry between the NIa protease and chymotrypsin. The protease exhibited a bell-shaped pH-dependent profile with a maximum activity approximately at pH 8.3 and with the abrupt changes at the respective pKm values of approximately 6.6 and 9.2, implying the involvement of a histidine residue in catalysis. Taken together, these results demonstrate that the three residues, His-46, Asp-81, and Cys-151, play a crucial role in catalysis of the TVMV NIa protease.  相似文献   

13.
The amino acid sequence of human factor D is proposed from the analysis of the peptides produced by treatment of the factor D with cyanogen bromide, iodosobenzoic acid, trypsin and V-8 protease. Comparison of the proposed sequence with the sequences of other serine esterases indicated that factor D, although it is a plasma serine esterase, is more closely related to certain proteases not found in the plasma than to other plasma serine esterases of the complement system. For example, 36% and 32% identity in amino acid sequence was found on comparison of factor D with elastase and group-specific protease, respectively. Whereas only 27% and 18% identity was observed between factor D and the other complement serine esterases, Clr and factor B, respectively.  相似文献   

14.
Proteases play important roles in parasite life cycles and host-parasite interactions. They are pathogenesis factors of many pathogenic organisms and are hence potential targets for chemotherapeutic treatment of disease. We identified a subtilisin-like serine protease gene, MyxSubtSP, expressed by Myxobolus cerebralis. After PCR with subtilisin-like serine protease primers, the gene was cloned, sequenced and aligned against the NCBI database. Its corresponding amino acid sequence included the putative conserved domains of Peptidase_S8, subtilase family and AprE, subtilisin-like serine proteases. Rapid amplification of 5' and 3' cDNA ends (RACE) was used to generate the full length (1385 bp) gene, with a 429 bp open reading frame. The gene encompasses coding regions for a catalytic triad formed by Asp-74, His-100 and Ser-110.  相似文献   

15.
The active center of a serine protease is the catalytic triad composed of His-57, Ser-195 and Asp-102. The existing crystal structure data on serine proteases have not fully answered a number of fundamental questions relating to the catalytic activity of serine proteases. The new high resolution native porcine beta-trypsin (BPT) structure is aimed at extending the knowledge on the conformation of the active site and the ordered water structure within and around the active site. The crystal structure of BPT has been determined at 1.63 A resolution. An acetate ion bound at the active site of a trypsin molecule by both classical hydrogen bonds and C-HellipsisO hydrogen bonds has been identified for the first time. A large network of water molecules extending from the recognition amino acid Asp-184 to the entry of the active site has been observed in the BPT structure. A detailed comparison with inhibitor complexes and autolysates indicates that the sulfate ion and the acetate ion bind at the same site of the trypsin molecule. The Ser-195 Cbeta-Ogamma-His-57 Nepsilon angle in the catalytic triad of BPT is intermediate between the corresponding values of the complex and native structure due to acetate ion binding. The network of waters from the recognition amino acid to the active site entry is probably the first ever complete picture of functional waters around the active site. Structural comparisons show that the functional waters involved in the binding of small molecule inhibitors and protease inhibitors are distinctly different.  相似文献   

16.
Mammalian serine proteases such as the chromosome 14 (Homo sapiens, Mus musculus) located granzymes, chymases, cathepsin G, and related enzymes including duodenase collectively represent a special group within the chymotrypsin family which we refer to here as "granases". Enzymes of this group have lost the ancient active-site disulfide bond Cys191-Cys220 (bovine chymotrypsinogen A numbering) which is strongly conserved in classic serine proteases such as pancreatic, blood coagulation, and fibrinolysis proteases and others (granzymes A, M, K and leukocyte elastases). We sequenced the cDNA encoding bovine (Bos taurus) duodenase, a granase with unusual dual trypsin-like and chymotrypsin-like specificity. The sequence revealed a 17-residue signal peptide and two-residue (GlyLys) activation peptide typical for granases. Production of the mature enzyme is apparently accompanied by further proteolytic processing of the C-terminal pentapeptide extension of duodenase. Similar C-terminal processing is known for another dual-specific granase, human cathepsin G. Using phylogenetic analysis based on 39 granases we retraced the evolution of residues 189 and 226 crucial for serine protease primary specificity. The analysis revealed that while there is no obvious link between mutability of residue 189 and the appearance of novel catalytic properties in granases, the mutability of residue 226 evidently gives rise to different specificity subgroups within this enzyme group. The architecture of the extended substrate-binding site of granases and structural basis of duodenase dual specificity based on molecular dynamic method are discussed. We conclude that the marked selectivity of granases that is crucial to their role as regulatory proteases has evolved through the fine-tuning of specificity at three levels--primary, secondary, and conformational.  相似文献   

17.
p-Antimonybenzenesulfonyl fluoride and p-mercurybenzenesulfonyl fluoride irreversibly inhibit chymotrypsin (EC 3.4.21.1), trypsin (EC 3.4.21.4), and chromosomal protease, and these inhibitors appear to be as active as phenylmethanesulfonyl fluoride. The pretreatment of the proteases interferes with the phosphorylation of the active-site serine by diisopropylfluorophosphate suggesting that the organometallic inhibitors may also interact with the active site serine. The organometallic inhibitors may be used for localization of proteases in different parts of the cell by electron microscopy and p-mercurybenzenesulfonyl fluoride could also be used for isolation of proteases by sulfhydryl affinity chromatography.  相似文献   

18.
A new class of phospholipases A2 that have a lysine at position 49 differ from the more conventional Asp-49 enzymes with respect to the sequential binding of the essential cofactor, calcium, and the substrate, phospholipid, in the formation of the catalytic complex (Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kézdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843). We report here the complete amino acid sequence of the Lys-49 enzyme from Agkistrodon piscivorus piscivorus. The sequence was determined by automated Edman degradation of the intact, S-carboxymethylcysteinyl protein and of peptides derived therefrom by cleavage with cyanogen bromide, chymotrypsin, trypsin, and endoproteinase Lys-C. Despite several changes at amino acid residues previously considered to be invariant, the Lys-49 enzymes are homologous to the Asp-49 phospholipases. Homology is especially apparent in the following: 1) the pattern of 14 half-cystine residues, 2) conservation of hydrophobic residues which have been shown to encircle the active site, and 3) conservation of Asp-99 and His-48 which have been implicated in the catalytic reaction itself. These observations together with kinetic and binding data imply that the Lys-49 phospholipases have a catalytic mechanism and a three-dimensional architecture similar to those of the Asp-49 enzymes. Modeling of the Lys-49 enzyme based upon the structure of bovine pancreatic phospholipase reveals that the epsilon-amino group of Lys-49 can fit easily in the calcium-binding site and, moreover, that this orientation of a cationic side chain at position 49 could account for the characteristic and novel feature of the Lys-49 phospholipases, i.e. that they are able to form complexes with phospholipid in the absence of calcium.  相似文献   

19.
The complete amino acid sequences of two isoproteins of the factor V-activating enzyme (RVV-V) isolated from Vipera russelli (Russell's viper) venom were determined by sequencing S-pyridylethylated derivatives of the proteins and their peptide fragments generated by either chemical (cyanogen bromide and 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine) or enzymatic (trypsin, alpha-chymotrypsin, and lysyl endopeptidase) cleavages. Both enzymes, designated RVV-V alpha and RVV-V gamma, consist of 236 amino acid residues and have a N-linked oligosaccharide chain at Asn229. The six amino acid substitutions between RVV-V alpha and -V gamma are: Thr22(alpha)-Ala22(gamma), Gly29(alpha)-Ala29(gamma), Gln191(alpha)-Glu191(gamma), Ile192(alpha)-Met192(gamma), Gln193(alpha)-His193(gamma), and Asn224(alpha)-Ser224(gamma). The molecular weights were calculated as 26,182 for RVV-V alpha and 26,167 for RVV-V gamma. The sequences of the RVV-V isoproteins exhibited 62% identity with that of batroxobin, a thrombin-like enzyme present in Bothrops atrox venom, and 33% identity with that of human thrombin B chain. The most interesting difference between the structures of RVV-V and other trypsin-type serine proteases is that the conservative Ser214-Trp215-Gly216 sequence (chymotrypsinogen numbering), considered as the site of antiparallel beta-sheet formation between the protein substrate and most serine proteases, has been replaced by the corresponding sequence Ala-Gly-Gly.  相似文献   

20.
The primary structure of the Hypoderma lineatum collagenase was determined. Chymotrypsin digestion and thermolysin fragmentation of the chymotryptic core gave 30 and 5 peptides, respectively, accounting for all the residues of the protein. These peptides were aligned with overlapping peptides derived from tryptic and Staphylococcus aureus V8 proteinase digests. Hypoderma collagenase is a serine proteinase composed of 230 amino acids (Mr 25,223). It displays a high degree of sequential homology with the serine proteinases of the trypsin family, especially with another collagenolytic enzyme, the proteinase I of the crab Uca pugilator. The six half-cystinyl residues of Hypoderma collagenase correspond to 6 of the 10 half-cystinyl residues of chymotrypsin, and the residues forming the charge-relay system of the active site of chymotrypsin (His-57, Asp-102, and Ser-195) are found in corresponding regions. The prediction of the secondary structure of the collagenase is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号